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1.QSAR identifier 

1.1. QSAR identifier (title): 

Daphnia Magna Chronic (NOEC) toxicity model (IRFMN) version 1.0.1 

1.2. Other related models: 

Algae (Raphidocelis subcapitata, ex Pseudokirchneriella subcapitata): EC50 72h (growth rate)  

Algae (Raphidocelis subcapitata, ex Pseudokirchneriella     subcapitata): NOEC 72h (growth rate)  

Daphnids (Daphnia magna): EC50 48h, acute (immobilisation)  

Daphnids (Daphnia magna): NOEC 21d, chronic (reproduction) 

Fish (Oryzias latipes): LC50 96h, acute (mortality)  

Fish (Oryzias latipes): NOEC, chronic (ELS-test). 

1.2. Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1. Date of QMRF:  

1-03-2022 

2.2. QMRF author(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Erika Colombo Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 Milano, 

Italy erika.colombo@marionegri.it https://www.marionegri.it/ 

2.3. Date of QMRF update(s): 

NA 

2.4. QMRF update(s): 

2.5. Model developer(s) and contact details: 

[1] Cosimo Toma - Laboratory of Environmental Chemistry and Toxicology Via Mario Negri 2, 20156 Milan, 

Italyhttps://www.vegahub.eu/contacts/  

[2] Alberto Manganaro, Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy alberto.manganaro@marionegri.it https://www.marionegri.it/ 

2.6. Date of model development and/or publication:  

2019 

2.7. Reference(s) to main scientific papers and/or software package: 

[1] Benfenati E, Manganaro A, Gini G  

VEGA-QSAR: AI inside a platform for predictive toxicology  

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th 2013, Turin, Italy  

Published on CEUR Workshop Proceedings Vol-1107 

https://www.marionegri.it/
https://www.marionegri.it/


 

2.8. Availability of information about the model: 

The model is non-proprietary and the training set is available. 

 

2.9. Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1. Species: 

The species name is Daphnia magna 

3.2. Endpoint: 

OECD Test No. 211: Daphnia magna Reproduction Test (2012, 1998) [2] 

3.3. Comment on endpoint:  

 The primary objective of the test is to assess the effect of chemicals on the reproductive output 

of Daphnia magna. To this end, young female Daphnia (the parent animals), aged less than 24 hours at 

the start of the test, are exposed to the test substance added to water at a range of concentrations. The test 

duration is 21 days. At the end of the test, the total number of living offspring produced is assessed. 

In the OECD TG 211 version from 1998 the response variable was number of living offspring produced  by 

surviving maternal daphnids at the end of the test duration (day 21) whereas the response variable is number 

of living offspring at the end of the test (day 21) per maternal daphnids at the start of the test excluding 

maternal accidental and/or inadvertent mortality for the OECD TG 211 version from 2012. These differences 

in response variable may in few cases give rise to different NOEC values. The ecologically most relevant 

response variable is the one included in the OECD TG 211 version from 2012.  

3.4. Endpoint units:  

mg/L 

3.5. Dependent variable:  

21d NOEC 

3.6. Experimental protocol:  

OECD TG 211 

3.7. Endpoint data quality and variability: 

306 experimental data retrieved from the Japanese Ministry of Environment 

(http://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf) and selected according to the OECD TG 211 

requirements. The dataset has been divided into training (215 mono constituent organic compounds) and 

test (92 mono constituent organic compounds). The Japanese database is from March and it is stated that 

“tests conducted before FY 2002   needs confirmation of test results, because some of these tests were 

conducted using dispersants”. Such use may have occurred when hydrophobic substances were tested 

before FY 2002 and it is known that use of disperstants and testing above the water solubility may produce 

unreliable results    

 

4.Defining the algorithm - OECD Principle 2 

4.1. Type of model: 

The model is a Tree Ensemble Random Forest. 

4.2. Explicit algorithm: 

To derive the model, we divided the data in training and test sets with the ratio of 80:20. In order to obtain a 

uniform distribution of the endpoint values between the two subsets we applied an activity and descriptors 

sampling method. We performed a Principal Component Analysis (PCA) on all the descriptors and we 

selected the first two principal components. We selected five random compounds, and then we picked the 



most dissimilar compound from the sample pool according to the first two principal components and the 

response using several combinations of distance metrics and scoring functions. Then we added the 

compound to the pool repeating the operation until we reached the desired number for the training set. 

Among the several algorithms used, we obtained the best results in terms of performance with a Random 

Forest called Tree ensemble. Tree ensemble builds a series of regression trees with different rows and     

different variables (according to certain parameters) and then it aggregates the results as an ensemble of 

models. It chooses the parameters for the variables of each tree and the number of compounds     evaluating 

the performance of several models (Hyperparameter tuning Research) using as metric R2 of a Bootstrap 

(100 iterations) cross-validation on training set. 

4.3. Descriptors in the model: 

[1] O%: percentage of O atoms 

[2] MLogP: Moriguchi octanol-water partition coeff. (logP) 

[3] nArNH2: number of primary amines (aromatic) 

[4] nS: number of Sulfur atoms 

[5] MATS5s: Moran autocorrelation of lag 5 weighted by I-state 

[6] MATS6m: Moran autocorrelation of lag 6 weighted by mass 

[7] EEig7dm: eigenvalue n. 7 from edge adjacency mat. weighted by dipole moment 

[8] CATS2D_07_DL: CATS2D Donor-Lipophilic at lag 07 

[9] C-026: R--CX--R 

[10] JGI3: mean topological charge index of order 3 

4.4. Descriptor selection: 

Dragon 7.0 extension for KNIME has been used to calculate the descriptors, resulting in 3839 2D descriptors. 

Then we applied a pruning process both to the compounds and to the descriptors pools. Firstly, we removed 

the compounds for which it was not feasible to calculate AlogP (octanol-water partition coefficient (Ghose and 

Crippen, 1986; Viswanadhan et al., 1993; Ghose et al., 1998)), as it is generally well acknowledged that this 

descriptor is the most correlated to the response. Then, to reduce the great number of variables, we removed 

all the descriptors with constant values (var(X) = 0), or which correlate over 0.95 (Pearson) with at least one 

another descriptor. In order to select the variables, we used two methods implemented in R packages for 

each dataset: the genetic algorithm (gaselect package) and the Variable Selection Using Random Forest 

(VSURF) package. We imported both the pools of variables of each dataset into a KNIME workflow to derive 

the models. 

4.5. Algorithm and descriptor generation: 

NA Dragon 7.0 extension for KNIME 

4.6. Software name and version for descriptor generation: 

Dragon 7.0 extension for KNIME.  

Calculation of several sets of molecular descriptors from molecular geometries (topological,geometrical, 

WHIM, 3D-MoRSE, molecular profiles, etc.) Prof. R.Todeschini - distributed by Talete srl, via Pisani 13, 20124 

Milano, Italyhttp://www.disat.unimib.it/chm 

4.7. Chemicals/Descriptors ratio: 

215/10 = 22 

 

5.Defining the applicability domain - OECD Principle 3 

5.1. Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An 

overall AD index is calculated, based on a number of parameters, which relate to the results obtained on 

similar substances within the training and test sets 

ADI is defined in this way for this QSAR model´s predictions: 



If 1 ≥ AD index > 0.85, the predicted substance is regarded in the Applicability Domain of the model. It 

corresponds to “good reliability” of prediction. 

If 0.85 ≥  AD index > 0.7, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to “moderate reliability” of prediction. 

If AD index ≤ 0.7, the predicted substance is regarded out of the Applicability Domain of the model. It 

corresponds to “low reliability” of prediction. 

Indices are calculated on the first k = 2 most similar molecules, each having Sk similarity value with the 
target molecule. 
 
Similarity index (IdxSimilarity) is calculated as: 
 
∑ 𝑆𝑘𝑘

𝑘
× (1 − 𝐷𝑖𝑎𝑚2) 

 
where Diam is the difference in similarity values between the most similar molecule and the k-th molecule. 
 
Accuracy index (IdxAccuracy) is calculated as: 
 
∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predc is the c-th molecule 
predicted value by the model. 
 
Concordance index (IdxConcordance) is calculated as: 
 

∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑡𝑎𝑟𝑔𝑒𝑡|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule. 
 
Max Error index (IdxMaxError) is calculated as: 
 
𝑚𝑎𝑥(|𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|) 
 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule, evaluated over the k molecules. 
 
ACF contribution (IdxACF) index is calculated as 
 
𝐴𝐶𝐹 = 𝑟𝑎𝑟𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
 
where: rare is calculated on the number of fragments found in the molecule and found in the training set in 
less than 3 occurences as following: if the number is 0, rare is set to 1.0; if the number is 1, rare is set to 
0.6; otherwise rare is set to 0.4 
 
missing is calculated on the number of fragments found in the molecule and never found in the training set 
as following: if the number is 0, missing is set to 1.0; if the number is 1, missing is set to 0.6; otherwise 
missing is set to 0.4 
 
Descriptors Range (IdxDescRange) index is calculated as 1.0 if all molecular descriptors used in the 
prediction fall within the range of descriptors used in the whole training set, 0.0 otherwise. 
 
AD final index is calculated as following: 
 
𝐴𝐷𝐼 = 𝐼𝑑𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 × 𝐼𝑑𝑥𝐴𝐶𝐹 × 𝐼𝑑𝑥𝐷𝑒𝑠𝑐𝑅𝑎𝑛𝑔𝑒 
 
The initialADI index is the used together with the other sub-indices to calculate the final ADI, on the basis of 
the assessment class in which each sub-index falls: 
 



IdxAccuracy  ≥ IdxConcordance ≥ IdxMaxError ≥ InitialADI ≥ ADI 

1.2 1.2 1.2 0.85 1.0 

0.8 0.8 0.8 0.7 0.85 

All other cases 0.7 

 

 

5.2. Method used to assess the applicability domain: 

The Applicability Domain and chemical similarity are measured with the algorithm developed for VEGA. Full 

details are in the VEGA website (www.vegahub.eu), including the open access paper describing it [3]. The 

VEGA AD also evaluates the correctness of the prediction on similar compounds (accuracy), the 

consistency between the predicted value for the target compound and the experimental values of the 

similar compounds, the range of the descriptors, and the presence of unusual fragments, using atom 

centred fragments. 

These indices are defined in this way for this QSAR model: 

 

Similar molecules with known experimental value: 

This index takes into account how similar are the first two most similar compounds found. Values near 1 

mean that the predicted compound is well represented in the dataset used to build the model, otherwise the 

prediction could be an extrapolation. Defined intervals are: 

 

If 1 ≥ index > 0.85, strongly similar compounds with known experimental value in the training set have been 

found 

 

If 0.85 ≥ index > 0.7, only moderately similar compounds with known experimental value in the training set 

have been found 

 

If index ≤ 0.7, no similar compounds with known experimental value in the training set have been found 

 

Accuracy (average error) of prediction for similar molecules: 

This index takes into account the classification accuracy in prediction for the two most similar compounds 

found. Values near 1 mean that the predicted compounds fall in an area of the model's space where the 

model gives reliable predictions (no misclassifications), otherwise the lower is the value, the worse the 

model behaves. Defined intervals are: 

 

If index < 0.8, accuracy of prediction for similar molecules found in the training set is good 

 

If 1.2 < index < 0.8, accuracy of prediction for similar molecules found in the training set is not optimal 

 

If index ≥ 1.2, accuracy of prediction for similar molecules found in the training set is not adequate 

 

Concordance for similar molecules:  

This index takes into account the difference between the predicted value and the experimental values of the 

two most similar compounds. Values near 0 mean that the prediction made disagrees with the values found 

in the model's space, thus the prediction could be unreliable. Defined intervals are: 

 

If index < 0.8, molecules found in the training set have experimental values that agree with the target 

compound predicted value 

 



If 1.2 < index < 0.8, similar molecules found in the training set have experimental values that slightly 

disagree with the target compound predicted value 

 

If index ≥ 1.2, similar molecules found in the training set have experimental values that completely disagree 

with the target compound predicted value 

 

Concordance for similar molecules:  

This index takes into account the maximum error in prediction between the two most similar compounds. 

Values near 0 means that the predicted compounds fall in an area of the model's space where the model 

gives reliable predictions without any outlier value. Defined intervals are: 

 

If index < 0.8, the maximum error in prediction of similar molecules found in the training set has a low value, 

considering the experimental variability 

 

If 1.2 < index < 0.8, the maximum error in prediction of similar molecules found in the training set has a 

moderate value, considering the experimental variability 

 

If index ≥ 1.2, the maximum error in prediction of similar molecules found in the training set has a high 

value, considering the experimental variability 

 

Atom Centered Fragments similarity check:  

This index takes into account the presence of one or more fragments that aren't found in the training set, or 

that are rare fragments. First order atom centered fragments from all molecules in the training set are 

calculated, then compared with the first order atom centered fragments from the predicted compound; then 

the index is calculated as following: a first index RARE takes into account rare fragments (those who occur 

less than three times in the training set), having value of 1 if no such fragments are found, 0.85 if up to 2 

fragments are found, 0.7 if more than 2 fragments are found; a second index NOTFOUND takes into 

account not found fragments, having value of 1 if no such fragments are found, 0.6 if a fragments is found, 

0.4 if more than 1 fragment is found. Then, the final index is given as the product RARE * NOTFOUND. 

Defined intervals are: 

 

If  index = 1, all atom centered fragment of the compound have been found in the compounds of the 

training set 

 

If 1 > index ≥ 0.7, some atom centered fragment of the compound has not been found in the compounds of 

the training set or are rare fragments 

 

If index < 0.7, a prominent number of atom centered fragments of the compound have not been found in 

the compounds of the training set or are rare fragments 

 

Model descriptors range check: 

This index checks if the descriptors calculated for the predicted compound are inside the range of 

descriptors of the training and test set. The index has value 1 if all descriptors are inside the range, 0 if at 

least one descriptor is out of the range. Defined intervals are: 

index = TRUE, descriptors for this compound have values inside the descriptor range of the compounds of 

the training set 

index = FALSE, descriptors for this compound have values outside the descriptor range of the compounds 

of the training set 

 



5.3. Software name and version for applicability domain assessment: 

VEGA (www.vegahub.eu) 

5.4. Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e., 

different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized 

form. 

6.Internal validation - OECD Principle 4 

6.1. Availability of the training set: 

Yes 

6.2. Available information for the training set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: Yes 

INChI: Yes 

MOL file: Yes 

NanoMaterial: No 

6.3. Data for each descriptor variable for the training set: 

All 

6.4. Data for the dependent variable for the training set: 

All 

 

6.5. Other information about the training set:  

Training set n: 215 

6.6. Pre-processing of data before modelling: 

SMILES creation and neutralization:   

Firstly, we generated the SMILES structures from the chemical name and CAS RN for each substance 

using ChemCell (2019) and Marvin View (Marvin 17.28.0, 2012017, ChemAxon, 2019). We manually 

checked the correspondence and correctness among the obtained structures, chemical name and CAS RN 

among several websites and public database like ChemIDplus Advanced ( NIH, 2019), PubChem (NCBI, 

2019), ChemSpider (Royal Society of Chemistry, 2019), DSSTox. Then, we added several structures, which 

have not automatically generated.  

 

We normalized the SMILES with istMolBase 1.0.3. (in-house software), then we neutralized them using 

KNIME 3.5. Since pH is acritical issue in the experimental assays on algae, we considered ionized 

normalized SMILES and we calculated the major microspecies at pH 7.5 and 8.1 using JChem for Excel. 

We removed the compounds for which the SMILES changed depending on pH (in range 7.5-8.1).  

 

Cleaning of the structure:  

We cleaned the datasets excluding the following compounds: metal complexes, inorganics, mixtures of 

structural isomers, ambiguous structures, non-ionic surfactant mixtures, complex disconnected structures 

(e.g. polymers), chemicals whose correspondence name-CAS was not found  

 

UVCB: salts; only the acid form was kept.  

 

Values cleaning:  



We selected continuous experimental values excluding those reported as a range, greater/less than a 

certain threshold, or approximate values. We converted each experimental value from mg/l to mmol/l, on 

the basis of the molecular weight calculated from the chemical structure. We also removed the compounds 

for which the experimental toxicity values were higher than the experimental water solubility values. For this 

purpose, we retrieved the experimental water solubility values mainly from a large database of more than 

4,000 chemicals that we pruned in the LIFE project ANTARES and from GuideChem and Sigma-Aldrich 

websites in the case we did not find the water solubilities elsewhere.  

 

Dealing with multiple values:  

To deal with multiple continuous data we referred to the procedures described in ECHA guidance R.10 

(2008) for ecotoxicological continuous endpoints. In case the experimental conditions and the reliability of 

the studies were the same, we considered the ratio between the maximum and the minimum values; if it 

was higher than one log unit, we eliminated the data. Then, we calculated the median, the arithmetic and 

geometric mean in mmol/l to check if there were differences among them. We found a very good correlation 

between the values of each combination (arithmetic vs geometric mean, arithmetic mean vs median, 

geometric mean vs median) and finally the geometric mean was preferred (ECHA guidance R.10, 2008). To 

normalize the data, we performed two types of transformation, the logarithm of the geometric mean and the 

Box-cox transformation. Since the box-cox transformation gave better results in terms of normalization of 

the data, it was finally used to normalize the data. We excluded data falling outside the range (mean of the 

box-cox transformed values) ± 3*(standard deviation).  

6.7. Statistics for goodness-of-fit: 

Training RMSE= 0.66, R2 =0.64, mean obs -2.52, n= 215  

6.8. Robustness - Statistics obtained by leave-one-out cross-validation: 

NA 

6.9. Robustness - Statistics obtained by leave-many-out cross-validation: 

NA 

6.10. Robustness - Statistics obtained by Y-scrambling: 

NA 

6.11. Robustness - Statistics obtained by bootstrap: 

NA 

6.12. Robustness - Statistics obtained by other methods:  

NA 

 

7.External validation - OECD Principle 4 

7.1. Availability of the external validation set: 

Yes 

7.2. Available information for the external validation set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: Yes 

INChI: Yes 

MOL file: Yes 

NanoMaterial: No 

7.3. Data for each descriptor variable for the external validation set: 

All 

7.4. Data for the dependent variable for the external validation set: 



All 

7.5. Other information about the external validation set: 

NA 

7.6. Experimental design of test set: 

Test set n: 92 

7.7. Predictivity - Statistics obtained by external validation: 

Test RMSE 0.81, R2 = 0.57 , mean obs -2.4, n= 92 

Test set in AD: n = 23; R2 = 0.76; RMSE = 0.46 

Test set could be out of AD: n = 29; R2 = 0.63; RMSE = 0.74 

Test set out of AD: n = 40; R2 = 0.43; RMSE = 1.00 

7.8. Predictivity - Assessment of the external validation set: 

NA 

7.9. Comments on the external validation of the model: 

NA 

 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1. Mechanistic basis of the model: 

NA 

8.2.A priori or a posteriori mechanistic interpretation: 

The mechanistic interpretation of the model is provided a posteriori, i.e. by interpretation of the final set of 

the selected descriptors  

8.3. Other information about the mechanistic interpretation: 

NA 

 

9.Miscellaneous information 

9.1. Comments: 

NA 

9.2. Bibliography: 

[1] Benfenati E, Manganaro A, Gini G, VEGA-QSAR: AI inside a platform for predictive toxicology  

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th, 2013, Turin, Italy  

Published on CEUR Workshop Proceedings Vol-1107 

[2] OECD. (1984, 1998, 2012). Test No. 211: Daphnia magna Reproduction Test. Organisation for 

Economic Cooperation and Development. https://www.oecd-ilibrary.org/environment/test-no-211-daphnia-

magna-reproduction-test_9789264185203-en 

[3] Floris, M., Manganaro, A., Nicolotti, O. et al. A generalizable definition of chemical similarity for read-

across. J Cheminform 6, 39 (2014). https://doi.org/10.1186/s13321-014-0039-1 

 

9.3. Supporting information: 

All available datasets are present in the model inside the VEGA software. 

10.Summary (JRC QSAR Model Database) 

10.1. QMRF number: 

To be entered by JRC 

10.2. Publication date: 

To be entered by JRC 

https://www.oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en
https://www.oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en


10.3. Keywords: 

To be entered by JRC 

10.4. Comments: 

To be entered by JRC 


