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1.QSAR identifier 

1.1.QSAR identifier (title): 

Developmental Toxicity model (CAESAR) - v. 2.1.8 

1.2.Other related models: 

Several models based on classification methods and hybrid techniques were developed within CAESAR 

project. These models, developed on the same dataset, are able to predict developmental toxicity with good 

performances. 

1.3.Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1.Date of QMRF: 

7-10-2022 

2.2.QMRF author(s) and contact details: 

[1] Antonio Cassano Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy antonio.cassano@marionegri.it https://www.marionegri.it/ 

[2] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

2.3.Date of QMRF update(s): 

NA 

2.4.QMRF update(s): 

CAESAR Developmental Toxicity Model 2.0 This is the standalone version of the CAESAR Developmental 

Toxicity Model 1.0. This software implements only the Developmental Toxicity endpoint. The Applicability 

Domain tab is the main improvement to the previous version. 

2.5.Model developer(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Antonio Cassano Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy antonio.cassano@marionegri.it https://www.marionegri.it/ 

[3] Alberto Manganaro Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy alberto.manganaro@marionegri.it https://www.marionegri.it/ 

2.6.Date of model development and/or publication: 

The model was published in 2010. 

2.7.Reference(s) to main scientific papers and/or software package: 

[1] Cassano, A., Manganaro, A., Martin, T. et al. CAESAR models for developmental toxicity. Chemistry 

Central Journal 4, S4 (2010). https://doi.org/10.1186/1752-153X-4-S1-S4 

https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/


[2] Benfenati E, Roncaglioni A, Lombardo A, Manganaro A. Integrating QSAR, Read-Across, and Screening 

Tools: The VEGAHUB Platform as an Example. Advances in Computational Toxicology; Springer; 2019. p. 

365-81. 

  

2.8.Availability of information about the model: 

The model is non-proprietary and the training set is available. 

2.9.Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1.Species: 

. 

Human and rat 

3.2.Endpoint: 

TOX 7.8.2. Developmental toxicity  

3.3.Comment on endpoint: 

.NA 

3.4.Endpoint units: 

Adimensional. 

3.5.Dependent variable: 

CAESAR binary class: Non developmental toxicant / Developmental toxicant 

3.6.Experimental protocol: 

NA 

3.7.Endpoint data quality and variability: 

The developmental toxicity data employed in CAESAR project comprises 292 compounds extracted from 

Arena et al. (see [1] in 9.2) with their names, CAS numbers, molecular structures and toxicity classes. This 

developmental toxicity database was constructed by combining subsets of information from the Teratogen 

Information System (TERIS) [2] and US Food and Drug Administration (FDA) guidelines [3]. Both sources 

are on evaluation of the existing human and animal data on potentially teratogenic chemicals, which are 

used by physicians for reference. The TERIS compilation is skewed toward a complete evaluation of the 

animal data; whereas the FDA discussions emphasize human studies or case reports, with some reference 

to pertinent animal studies. 

The original data set includes 293 compounds, but Azatguiorube was eliminated because there was no 

structural information about this compound in two databases of chemical structures: Chemfinder and 

ChemIDPlus. Then he dataset was individually checked in order to be sure that the chemical structures to 

be used for modeling were correct. Finally, we removed inorganic ions and water molecules. 

The developmental toxicity data set (see [1] in 9.2) was firstly subdivided into 5 categories, according to the 

FDA criteria. Then, for developing classification models, the developmental toxicity data set was subdivided 

in two classes, i.e. non developmental toxicant (N) and developmental toxicant (D). The class N merges the 

first FDA two categories i.e. Category A and B, whereas the class D includes all compounds belonging to 

categories C, D and X. 

Finally, the data set was split into training (234 substances) and test sets (58 substances) using rational 

design, by CAESAR Partner Helmholtz-Zentrum für Umweltforschung, using ChemProp [4,5]. 

 

4.Defining the algorithm - OECD Principle 2 

4.1.Type of model: 

QSAR classification model for Developmental Toxicity based on a Random Forest method implemented 

using WEKA open-source libraries. 



4.2.Explicit algorithm: 

Random forest 

A random forest is a classifier consisting of a collection of tree-structured classifiers such that each tree 

depends on the values of a random vector sampled independently and with the same distribution for all 

trees in the forest. The generalization error for forests converges to a limit as the number of trees in the 

forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the 

individual trees in the forest and the correlation between them [6]. 

The Random Forest classifier is implemented as in the WEKA libraries version 3.5.8 using the following 

parameters: Number of trees in the forest: 10, Random number seed: 1, Depth: 12 

4.3.Descriptors in the model: 

[1] SdssC adimensional Sum of all ( C – ) E-State values in molecule 

[2] SHssNH Sum of all [ – NH – ] E-State values in molecule 

[3] icycem Mean Information on the Vertex Cycle Matrix y 

[4] BEHm1 highest eigenvalue n.1 of Burden matrix / weighted by atomic masses 

[5] BELv1 lowest eigenvalue n. 1 of Burden matrix / weighted by atomic van der Waals volumes 

[6] BELv8 lowest eigenvalue n.8 of Burden matrix / weighted by atomic van der Waals volumes 

[7] BELp3 lowest eigenvalue n.3 of Burden matrix / weighted by atomic polarizabilities 

[8] MATS4v Moran autocorrelation - lag4 / weighted by atomic van der Waals volumes 

[9] MATS1p Moran autocorrelation - lag1 / weighted by atomic polarizabilities 

[10] MATS4p Moran autocorrelation - lag4 / weighted by atomic polarizabilities 

[11] GATS2m Geary autocorrelation - lag 2/ weighted by atomic polarizabilities 

[12] GATS3v Geary autocorrelation - lag 3 / weighted by atomic van der Waals volumes 

[13] GATS1p Geary autocorrelation - lag1 / weighted by atomic polarizabilities  

4.4.Descriptor selection: 

To avoid false chance correlation between the descriptors and biological activity, a variety of methods were 

employed in CAESAR project to reduce the data ‘noise’. The technique used for feature selection was 

based on the multileveled-self organization. The goal of multileveled-self-organization is to select a 

composition of most relevant input variables with respect to best satisfying the final goal of modelling. 

4.5.Algorithm and descriptor generation: 

EPA descriptors have been used for modeling. They refer to descriptors calculated using Toxicity Estimation 

Software Tool (T.E.S.T.). The selected number of descriptors is 13.  

4.6.Software name and version for descriptor generation: 

Descriptors are calculated by an in-house JAVA software, developed by Todd Martin (EPA), based on the 

CDK open-source libraries. 

4.7.Chemicals/Descriptors ratio: 

234/13 = 18 

 

5.Defining the applicability domain - OECD Principle 3 

5.1.Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An 

overall AD index is calculated, based on a number of parameters, which relate to the results obtained on 

similar chemicals within the training and test sets. 

ADI is defined in this way for this QSAR model´s predictions: 

If 1 ≥ AD index ≥ 0.8, the predicted substance is regarded in the Applicability Domain of the model. It 

corresponds to “good reliability” of prediction. 

If 0.8 > AD index ≥ 0.7, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to “moderate reliability” of prediction. 



If AD index < 0.7, the predicted substance is regarded out of the Applicability Domain of the model. It 

corresponds to “low reliability” of prediction. 

5.2.Method used to assess the applicability domain: 

The VEGA applicability domain and chemical similarity are measured with the algorithm developed for 

VEGA. Full details are in the VEGA website (www.vegahub.eu), including the open access paper describing 

it [7]. The AD also evaluates the correctness of the prediction on similar compounds (accuracy), the 

consistency between the predicted value for the target compound and the experimental values of the 

similar compounds, the range of the descriptors, and the presence of unusual fragments, using atom 

centred fragments. 

These indices are defined in this way for this QSAR model: 

 

Similar molecules with known experimental value: 

This index takes into account how similar are the first two most similar compounds found. Values near 1 

mean that the predicted compound is well represented in the dataset used to build the model, otherwise the 

prediction could be an extrapolation. Defined intervals are: 

 

If 1 ≥ index > 0.8, strongly similar compounds with known experimental value in the training set have been 

found 

 

If 0.8 ≥ index > 0.7, only moderately similar compounds with known experimental value in the training set 

have been found 

 

If index ≤ 0.7, no similar compounds with known experimental value in the training set have been found 

 

Accuracy (average error) of prediction for similar molecules: 

This index takes into account the classification accuracy in prediction for the two most similar compounds 

found. Values near 1 mean that the predicted compounds fall in an area of the model's space where the 

model gives reliable predictions (no misclassifications), otherwise the lower is the value, the worse the model 

behaves. Defined intervals are: 

 

If 1 ≥ index > 0.8, accuracy of prediction for similar molecules found in the training set is good 

 

If 0.8 ≥ index > 0.6, accuracy of prediction for similar molecules found in the training set is not optimal 

 

If index ≤ 0.6, accuracy of prediction for similar molecules found in the training set is not adequate 

 

Concordance for similar molecules:  

This index takes into account the difference between the predicted value and the experimental values of the 

two most similar compounds. Values near 0 mean that the prediction made disagrees with the values found 

in the model's space, thus the prediction could be unreliable. Defined intervals are: 

 

If 1 ≥ index > 0.8, molecules found in the training set have experimental values that agree with the target 

compound predicted value 

 

If 0.8 ≥ index > 0.6, similar molecules found in the training set have experimental values that slightly disagree 

with the target compound predicted value 

 

If index ≤ 0.6, similar molecules found in the training set have experimental values that completely disagree 

with the target compound predicted value 



 

Atom Centered Fragments similarity check:  

This index takes into account the presence of one or more fragments that aren't found in the training set, or 

that are rare fragments. First order atom centered fragments from all molecules in the training set are 

calculated, then compared with the first order atom centered fragments from the predicted compound; then 

the index is calculated as following  

If  index = 1, all atom centered fragment of the compound have been found in the compounds of the training 

set 

 

If 1 > index ≥ 0.7, some atom centered fragment of the compound have not been found in the compounds of 

the training set or are rare fragments 

 

If index < 0.7, a prominent number of atom centered fragments of the compound have not been found in the 

compounds of the training set or are rare fragments 

 

Atom Centered Fragments similarity check:  

This index checks if the descriptors calculated for the predicted compound are inside the range of descriptors 

of the training and test set. The index has value 1 if all descriptors are inside the range, 0 if at least one 

descriptor is out of the range. Defined intervals are: 

If index = True, descriptors for this compound have values inside the descriptor range of the compounds of 

the training set 

If index = False, descriptors for this compound have values outside the descriptor range of the compounds 

of the training set 

 

5.3.Software name and version for applicability domain assessment: 

VEGA (www.vegahub.eu) 

5.4.Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e., 

different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized form. 

 

6.Internal validation - OECD Principle 4 

6.1.Availability of the training set: 

Yes 

6.2.Available information for the training set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: No 

INChI: No 

MOL file: Yes 

NanoMaterial: No 

6.3.Data for each descriptor variable for the training set: 

All 

6.4.Data for the dependent variable for the training set: 

All 

6.5.Other information about the training set: 



Dataset n = 292 

6.6.Pre-processing of data before modelling: 

See 3.3 

6.7.Statistics for goodness-of-fit: 

Training set: n = 234 

Accuracy 100%; FP rate 0%; FN rate 0%; PPV 100%; NPV 100%; Sensitivity 100%; Specificity 100%; Nb 

unpredicted 0. 

6.8.Robustness - Statistics obtained by leave-one-out cross-validation: 

NA 

6.9.Robustness - Statistics obtained by leave-many-out cross-validation: 

10-folds-CV on the training set: Accuracy 77%; FP rate 39%; FN rate 16%; PPV 82%; NPV 64%; Sensitivity 

84%; Specificity 61%; Nb unpredicted 54. 

6.10.Robustness - Statistics obtained by Y-scrambling: 

NA 

6.11.Robustness - Statistics obtained by bootstrap: 

NA 

6.12.Robustness - Statistics obtained by other methods: 

NA 

 

7.External validation - OECD Principle 4 

7.1.Availability of the external validation set: 

Yes 

7.2.Available information for the external validation set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: No 

INChI: No 

MOL file: Yes 

NanoMaterial: No 

7.3.Data for each descriptor variable for the external validation set: 

All 

7.4.Data for the dependent variable for the external validation set: 

All 

7.5.Other information about the external validation set: 

NA 

7.6.Experimental design of test set: 

The dataset was splitted in training and test sets in a rational way. All the compounds were sorted 

according to a hierarchical system of compound classes in relation to functional group. Within classes, the 

compounds were sorted according to halogen substitution, aromaticity, bond orders, ring contents, and 

number of atoms. Particular attention was paid to ordering compounds with mixed functional property 

groups. 

The test set was separated from the sorted list by keeping the relations between these compound classes 

in both resulting sets as close as possible to the relations in the total set. The final training and test sets 

include 234 and 58 compounds, respectively. 



7.7.Predictivity - Statistics obtained by external validation: 

Test set: n = 58, Accuracy 84%; FP rate 41%; FN rate 5%; PPV 85%; NPV 83%; Sensitivity 95%; Specificity 

59%; Nb unpredicted 9. 

Test set in AD: n= 28, Accuracy 96%, TP 23, TN 4, FP 1, FN 0, PPV 96%, NPV 100%, Sensitivity 100%, 

Specificity 80% 

Test set “could be out of AD”: n = 12, TP 6, TN 1, FP 4, FN 1, PPV 60%, NPV 50%, Sensitivity 86%, 

Specificity 20% 

Test set out of AD: n = 18, TP 10, TN 5, FN 1, FP 5, PPV 83%, NPV 83%, Sensitivity 90%, Specificity 71% 

7.8.Predictivity - Assessment of the external validation set: 

NA 

7.9.Comments on the external validation of the model: 

NA 

 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1.Mechanistic basis of the model: 

No assumption on the mechanism is done.  

No rules have been so far reported in the literature. Several mechanisms are expected to be involved, due 

to the complexity of the endpoint. 

8.2.A priori or a posteriori mechanistic interpretation: 

NA 

8.3.Other information about the mechanistic interpretation: 

NA 

 

9.Miscellaneous information 

9.1.Comments: 

NA 
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9.3.Supporting information: 

Training set(s)Test set(s)Supporting information: 

https://doi.org/10.1186/s13321-014-0039-1
http://www.journal.chemistrycentral.com/content/s/S1/S4


All available dataset are present in the model inside the VEGA software. 

 

10.Summary (JRC QSAR Model Database) 

10.1.QMRF number: 

To be entered by JRC 

10.2.Publication date: 

To be entered by JRC 

10.3.Keywords: 

To be entered by JRC 

10.4.Comments: 

To be entered by JRC 


