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1.QSAR identifier 

1.1. QSAR identifier (title): 

Fish Acute (LC50) Toxicity model (IRFMN) (version 1.0.1) 

1.2. Other related models: 

There is a series of models, called aquatic toxicity models, all based on the same dataset.   

The various endpoints are 

Algae: (Raphidocelis  subcapitata,  ex Pseudokirchneriella subcapitata) EC50 72h (specific growth rate) 

Algae: (Raphidocelis  subcapitata,  ex Pseudokirchneriella subcapitata) NOEC 72h (specific growth rate) 

Daphnia magna: EC50 48h, acute (immobilisation) 

Daphnia magna: NOEC 21d, chronic (reproduction) 

Fish (Oryzias latipes): LC50 96h, acute (mortality) 

Fish (Oryzias latipes): NOEC, chronic (ELS-test). 

1.3. Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1. Date of QMRF: 

April 2022 

2.2. QMRF author(s) and contact details: 

[1] Erika Colombo Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy erika.colombo@marionegri.it https://www.marionegri.it/ 

[2] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

2.3. Date of QMRF update(s): 

NA 

2.4. QMRF update(s): 

NA 

2.5. Model developer(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Alberto Manganaro Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy alberto.manganaro@marionegri.it https://www.marionegri.it/ 

2.6. Date of model development and/or publication: 

The model was developed in 2019. 

2.7. Reference(s) to main scientific papers and/or software package: 

https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/


[1] Toma, C.; Cappelli, C. I.; Manganaro, A.; Lombardo, A.; Arning, J.; Benfenati, E. New Models to Predict 

the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic 

Environments. Molecules 2021, 26 (22), 6983. https://doi.org/10.3390/molecules26226983. 

[2] Benfenati E, Manganaro A, Gini G 

VEGA-QSAR: AI inside a platform for predictive toxicology 

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th 2013, Turin, Italy 

Published on CEUR Workshop Proceedings Vol-1107 

2.8. Availability of information about the model: 

The model is non-proprietary and the training set is available. 

2.9. Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1. Species: 

Oryzias latipes (Japanese ricefish/medaka, fish) 

3.2. Endpoint: 

ECOTOX 6.1.1. Short-term toxicity to fish, OECD TG 203 “Fish, Acute Toxicity Test” (1981, 1984 & 1992) 

[8] 

3.3. Comment on endpoint: 

The test evaluates the effects of the tested chemical on fish. LC50 96h, acute (mortality) 

3.4. Endpoint units:  

96h LC50, expressed in mg/L 

3.5. Dependent variable:  

LC50 96h 

3.6. Experimental protocol: 

OECD TG 203 “Fish, Acute Toxicity Test” (1981, 1984 & 1992) [8] 

3.7. Endpoint data quality and variability: 

Data are continuous experimental toxicity values from the Ministry of Environment in Japan. Data are freely 

available, since March 2016, at the link https://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf. The 

experimental values came from aquatic toxicity tests performed according to OECD TG 203 and OECD 

-GLP standards. Test data generated before 2002 may have employed dispersants   

 

4.Defining the algorithm - OECD Principle 2 

4.1. Type of model: 

The model is based on Fish Acute (LC50 96h) toxicity of 331 experimental data on Oryzias latipes selected 

according to OECD TG 203. Data are continuous experimental toxicity values from the Ministry of 

Environment in Japan. Data are freely available, since March 2016, at the link 

https://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf.. 

4.2. Explicit algorithm: 

Tree Ensemble Random Forest 

To derive the models, we divided the data in training and test sets with the ratio of 80:20. In order to obtain 

a uniform distribution of the endpoint values between the two subsets we applied an activity and descriptors 

sampling method. We performed a Principal Component Analysis (PCA) on all the descriptors and we 

selected the first two principal components. We selected five random compounds, and then we picked the 

most dissimilar compound from the sample pool according to the first two principal components and the 

response using several combinations of distance metrics and scoring functions. Then we added the 

compound to the pool repeating the operation until we reached the desired number for the training set. 



Among the several algorithms used, we obtained the best results in terms of performance with a Random 

Forest called Tree ensemble. Tree ensemble builds a series of regression trees with different rows and 

different variables (according to certain parameters) and then it aggregates the results as an ensemble of 

models. It chooses the parameters for the variables of each tree and the number of compounds evaluating 

the performance of several models (Hyperparameter tuning Research) using as metric R2 of a Bootstrap 

(100 iterations) cross-validation on training set. 

4.3. Descriptors in the model: 

 Dragon 7.0 extension for KNIME 2 D descriptors 

4.4. Descriptor selection: 

In order to select the variables, we used Variable Selection Using Random Forest (VSURF) method 

implemented in R package. 
We imported both the pools of variables of each dataset into a KNIME workflow to derive the models. 

4.5. Algorithm and descriptor generation:  

Dragon 7.0 extension for KNIME has been used to calculate the descriptors, resulting in 3839 2D 

descriptors. Then we applied a pruning process both to the compounds and to the descriptors pools. Firstly, 

we removed the compounds for which it was not feasible to calculate AlogP (octanol-water partition 

coefficient (Ghose and Crippen, 1986; Viswanadhan et al., 1993; Ghose et al., 1998)), as it is generally well 

acknowledged that this descriptor is the most correlated to the response. Then, to reduce the great number 

of variables, we removed all the descriptors with constant values (var(X) = 0), or which correlate over 0.95 

(Pearson) with at least one another descriptor.  

To derive the models, we divided the data in training and test sets with the ratio of 80:20. In order to obtain 

a uniform distribution of the endpoint values between the two subsets we applied an activity and descriptors 

sampling method. We performed a Principal Component Analysis (PCA) on all the descriptors and we 

selected the first two principal components. We selected five random compounds, and then we picked the 

most dissimilar compound from the sample pool according to the first two principal components and the 

response using several combinations of distance metrics and scoring functions. Then we added the 

compound to the pool repeating the operation until we reached the desired number for the training set. 

Among the several algorithms used, we obtained the best results in terms of performance with a Random 

Forest called Tree ensemble. Tree ensemble builds a series of regression trees with different rows and 

different variables (according to certain parameters) and then it aggregates the results as an ensemble of 

models. It chooses the parameters for the variables of each tree and the number of compounds evaluating 

the performance of several models (Hyperparameter tuning Research) using as metric R2 of a Bootstrap 

(100 iterations) cross-validation on training set. 

The final number of descriptors was found to be 13. 

 

4.6. Software name and version for descriptor generation: 

Dragon 7.0 extension for KNIME 
Calculation of several sets of molecular descriptors from molecular geometries (topological, geometrical, 

WHIM, 3D-MoRSE, molecular profiles, etc.) Prof. R.Todeschini - distributed by Talete srl, via Pisani 13, 

20124 Milano, Italy  
KNIME v3.5 
Open source KNIME Analytics Platform for creating data science – distribuited by KNIME AG 

Hardturmstrasse 66 8005 Zurich Switzerland 

4.7. Chemicals/Descriptors ratio: 

331/13 = 26 

 

5.Defining the applicability domain - OECD Principle 3 

5.1. Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An 

overall AD index is calculated, based on a number of parameters, which relate to the results obtained on 



similar chemicals within the training and test sets and is defined in this way for this QSAR model´s 

predictions: 

If 1 ≥ AD index > 0.85, the predicted substance is regarded in the Applicability Domain of the model, It 

corresponds to “good reliability of prediction 

If 0.85 ≥ AD index > 0.7, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to “moderate reliability of prediction 

If AD index ≤ 0.7, the predicted substance is regarded out of the Applicability Domain of the model. It 

corresponds to “low reliability of prediction 

 

Indices are calculated on the first k = 2 most similar molecules, each having Sk similarity value with the 
target molecule. 
 
Similarity index (IdxSimilarity) is calculated as: 
 
∑ 𝑆𝑘𝑘

𝑘
× (1 − 𝐷𝑖𝑎𝑚2) 

 
where Diam is the difference in similarity values between the most similar molecule and the k-th molecule. 
 
Accuracy index (IdxAccuracy) is calculated as: 
 
∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predc is the c-th molecule 
predicted value by the model. 
 
Concordance index (IdxConcordance) is calculated as: 
 

∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑡𝑎𝑟𝑔𝑒𝑡|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule. 
 
Max Error index (IdxMaxError) is calculated as: 
 
𝑚𝑎𝑥(|𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|) 
 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule, evaluated over the k molecules. 
 
ACF contribution (IdxACF) index is calculated as 
 
𝐴𝐶𝐹 = 𝑟𝑎𝑟𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
 
where: rare is calculated on the number of fragments found in the molecule and found in the training set in 
less than 3 occurences as following: if the number is 0, rare is set to 1.0; if the number is 1, rare is set to 
0.6; otherwise rare is set to 0.4 
 
missing is calculated on the number of fragments found in the molecule and never found in the training set 
as following: if the number is 0, missing is set to 1.0; if the number is 1, missing is set to 0.6; otherwise 
missing is set to 0.4 
 
Descriptors Range (IdxDescRange) index is calculated as 1.0 if all molecular descriptors used in the 
prediction fall within the range of descriptors used in the whole training set, 0.0 otherwise. 
 
AD final index is calculated as following: 
 
𝐴𝐷𝐼 = 𝐼𝑑𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 × 𝐼𝑑𝑥𝐴𝐶𝐹 × 𝐼𝑑𝑥𝐷𝑒𝑠𝑐𝑅𝑎𝑛𝑔𝑒 
 



The initialADI index is the used together with the other sub-indices to calculate the final ADI, on the basis of 
the assessment class in which each sub-index falls: 
 

IdxAccuracy  ≥ IdxConcordance ≥ IdxMaxError ≥ InitialADI ≥ ADI 

1.5 1.5 1.5 0.85 1.0 

0.8 0.8 0.8 0.7 0.85 

All other cases 0.7 

 

 

5.2. Method used to assess the applicability domain: 

The Applicability Domain and chemical similarity is measured with the algorithm developed for VEGA. Full 

details are in the VEGA website (www.vegahub.eu), including the open access paper describing it [9]. The 

AD also evaluates the correctness of the prediction on similar compounds (accuracy), the consistency 

between the predicted value for the target compound and the experimental values of the similar 

compounds, the range of the descriptors, and the presence of unusual fragments, using atom centred 

fragments. 

These indices are defined in this way for this QSAR model: 
 

Similar molecules with known experimental value: 

This index takes into account how similar are the first two most similar compounds found. Values near 1 

mean that the predicted compound is well represented in the dataset used to build the model, otherwise 

the prediction could be an extrapolation. Defined intervals are: 

 

If 1 ≥ index > 0.85, strongly similar compounds with known experimental value in the training set have 

been found 

 

If 0.85 ≥ index > 0.7, only moderately similar compounds with known experimental value in the training 

set have been found 

 

If index ≤ 0.7, no similar compounds with known experimental value in the training set have been found 

 

Accuracy (average error) of prediction for similar molecules: 

This index takes into account the classification accuracy in prediction for the two most similar 

compounds found. Values near 1 mean that the predicted compounds fall in an area of the model's 

space where the model gives reliable predictions (no misclassifications), otherwise the lower is the 

value, the worse the model behaves. Defined intervals are: 

 

If index < 0.8, accuracy of prediction for similar molecules found in the training set is good 

 

If 1.5 > index ≥ 0.8, accuracy of prediction for similar molecules found in the training set is not optimal 

 

If index ≥ 1.5, accuracy of prediction for similar molecules found in the training set is not adequate 

 

Concordance for similar molecules:  

This index takes into account the difference between the predicted value and the experimental values 

of the two most similar compounds. Values near 0 mean that the prediction made disagrees with the 

values found in the model's space, thus the prediction could be unreliable. Defined intervals are: 

 



If index < 0.8, molecules found in the training set have experimental values that agree with the target 

compound predicted value 

 

If 1.5 > index ≥ 0.8, similar molecules found in the training set have experimental values that slightly 

disagree with the target compound predicted value 

 

If index ≥ 1.5, similar molecules found in the training set have experimental values that completely 

disagree with the target compound predicted value 

 

Maximum error of prediction among similar molecules: 

This index takes into account the maximum error in prediction among the two most similar compounds. 

Values near 0 means that the predicted compounds fall in an area of the model's space where the 

model gives reliable predictions without any outlier value. Defined intervals are: 

 

If index < 0.8, the maximum error in prediction of similar molecules found in the training set has a low 

value, considering the experimental variability 

 

If 1.5 > index ≥ 0.8, the maximum error in prediction of similar molecules found in the training set has a 

moderate value, considering the experimental variability 

 

If index ≥ 1.5, the maximum error in prediction of similar molecules found in the training set has a high 

value, considering the experimental variability 

 

 

Atom Centered Fragments similarity check:  

 

This index takes into account the presence of one or more fragments that aren't found in the training 

set, or that are rare fragments. First order atom centered fragments from all molecules in the training 

set are calculated, then compared with the first order atom centered fragments from the predicted 

compound; then the index is calculated as following: a first index RARE takes into account rare 

fragments (those who occur less than three times in the training set), having value of 1 if no such 

fragments are found, 0.85 if up to 2 fragments are found, 0.7 if more than 2 fragments are found; a 

second index NOTFOUND takes into account not found fragments, having value of 1 if no such 

fragments are found, 0.6 if a fragments is found, 0.4 if more than 1 fragment is found. Then, the final 

index is given as the product RARE * NOTFOUND. Defined intervals are  

If  index = 1, all atom centered fragment of the compound have been found in the compounds of the 

training set 

 

If 1 > index ≥ 0.7, some atom centered fragment of the compound have not been found in the 

compounds of the training set or are rare fragments 

 

If index < 0.7, a prominent number of atom centered fragments of the compound have not been found 

in the compounds of the training set or are rare fragments 

 

 

Model descriptors range check: 

This index checks if the descriptors calculated for the predicted compound are inside the range of 

descriptors of the training and test set. The index has value 1 if all descriptors are inside the range, 0 if 

at least one descriptor is out of the range. Defined intervals are: 



 

Index = TRUE, descriptors for this compound have values inside the descriptor range of the compounds 

of the training set 

Index = FALSE, descriptors for this compound have values outside the descriptor range of the 

compounds of the training set 

 

5.3. Software name and version for applicability domain assessment: 

VEGA (www.vegahub.eu) 

5.4. Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e.,  
 different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized form 

6.Internal validation - OECD Principle 4 

6.1. Availability of the training set: 

Yes 

6.2. Available information for the training set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: No 

INChI: No 

MOL file: Yes 

NanoMaterial: No 

6.3. Data for each descriptor variable for the training set: 

All 

6.4. Data for the dependent variable for the training set: 

All 

6.5. Other information about the training set: NA 

6.6. Pre-processing of data before modelling: 

SMILES creation and neutralization 

Firstly, we generated the SMILES structures from the chemical name and CAS RN for each substance 

using ChemCell (2019) and Marvin View (Marvin 17.28.0, 2012017, ChemAxon, 2019). We manually 

checked the correspondence and correctness among the obtained structures, chemical name and CAS RN 

among several websites and public database like ChemIDplus Advanced ( NIH, 2019), PubChem (NCBI, 

2019), ChemSpider (Royal Society of Chemistry, 2019), DSSTox. Then, we added several structures, 

which have not automatically generated. 

We normalized the SMILES with istMolBase 1.0.3. (in-house software), then we neutralized them using 

KNIME 3.5. Since pH is acritical issue in the experimental assays on algae, we considered ionized 

normalized SMILES and we calculated the major microspecies at pH 7.5 and 8.1 using JChem for Excel. 

We removed the compounds for which the SMILES changed depending on pH (in range 7.5-8.1). 

Cleaning of the structure 

We cleaned the datasets excluding the following compounds: 

metal complexes 

inorganics  

mixtures of structural isomers 

ambiguous structures 

non-ionic surfactant mixtures 

complex disconnected structures (e.g. polymers)  



chemicals whose correspondence name-CAS was not found 

UVCB 

salts; only the acid form was kept. 

Values cleaning 

We selected continuous experimental values excluding those reported as a range, greater/less than a 

certain threshold, or approximate values. We converted each experimental value from mg/l to mmol/l, on 

the basis of the molecular weight calculated from the chemical structure. We also removed the compounds 

for which the experimental toxicity values were higher than the experimental water solubility values. For this 

pourpose, we retrieved the experimental water solubility values mainly from a large database of more than 

4,000 chemicals that we pruned in the LIFE project ANTARES and from GuideChem and Sigma-Aldrich 

websites in the case we did not find the water solubilities elsewhere. 

Dealing with multiple values 

To deal with multiple continuous data we referred to the procedures described in ECHA guidance R.10 

(2008) for ecotoxicological continuous endpoints. In case the experimental conditions and the reliability of 

the studies were the same, we considered the ratio between the maximum and the minimum values; if it 

was higher than one log unit we eliminated the data. Then, we calculated the median, the arithmetic and 

geometric mean in mmol/l to check if there were differences among them. We found a very good correlation 

between the values of each combination (arithmetic vs geometric mean, arithmetic mean vs median, 

geometric mean vs median) and finally the geometric mean was preferred (ECHA guidance R.10, 2008). To 

normalize the data we performed two types of transformation, the logarithm of the geometric mean and the 

Box-cox transformation. Since the box-cox transformation gave better results in terms of normalization of 

the data, it was finally used to normalize the data. We excluded data falling outside the range (mean of the 

box-cox transformed values) ± 3*(standard deviation).  

6.7. Statistics for goodness-of-fit: 

These performances are to be referred to the model implemented in VEGA and not to the original model 

described in the paper: 

Training set: RMSE = 0.75; R2 = 0.72; mean obs = -2.73; n = 264  

 

6.8. Robustness - Statistics obtained by leave-one-out cross-validation:  

NA 

6.9. Robustness - Statistics obtained by leave-many-out cross-validation:  

NA 

6.10. Robustness - Statistics obtained by Y-scrambling:  

NA 

6.11. Robustness - Statistics obtained by bootstrap: 

NA 

6.12. Robustness - Statistics obtained by other methods: 

NA 

 

7.External validation - OECD Principle 4 

7.1. Availability of the external validation set: 

Yes 

7.2. Available information for the external validation set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: No 

INChI: No 



MOL file: Yes 

NanoMaterial: No 

7.3. Data for each descriptor variable for the external validation set:  

NA 

7.4. Data for the dependent variable for the external validation set: 

NA 

7.5. Other information about the external validation set: 

NA 

7.6. Experimental design of test set: 

NA 

7.7. Predictivity - Statistics obtained by external validation: 

These performances are to be referred to the model implemented in VEGA and not to the original model 

described in the paper 

Test set: RMSE = 0.96; R 2 = 0.51; mean obs = -2.33; n = 67Test set in AD: n = 24; R 2 = 0.81; RMSE = 

0.49 

Test set could be out of AD: n = 18; R 2 = 0.52; RMSE = 1.02 

Test set could be out of AD: n = 25; R 2 = 0.32; RMSE = 1.227.8. Predictivity - Assessment of the external 

validation set: 

NA 

7.9. Comments on the external validation of the model: 

NA 

 

 

 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1. Mechanistic basis of the model:  

NA 

8.2. A priori or a posteriori mechanistic interpretation:  

a posteriori 

8.3. Other information about the mechanistic interpretation:  

NA 

 

9.Miscellaneous information 

9.1. Comments:  

NA 
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9.3. Supporting information: 

All available dataset are present in the model inside the VEGA software. 

 

10.Summary (JRC QSAR Model Database) 

10.1. QMRF number: 

To be entered by JRC 

10.2. Publication date: 

To be entered by JRC 

10.3. Keywords: 

To be entered by JRC 

10.4. Comments: 

To be entered by JRC 
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