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1.QSAR identifier 

1.1. QSAR identifier (title): 

Fish Chronic (NOEC) Toxicity model (IRFMN) (version 1.0.1) 

1.2. Other related models: 

There is a series of models, called aquatic toxicity models, all based on the same dataset.   

The various endpoints are 

Algae: (Raphidocelis  subcapitata,  ex Pseudokirchneriella subcapitata) EC50 72h (growth rate) 

Algae: (Raphidocelis  subcapitata,  ex Pseudokirchneriella subcapitata) NOEC 72h (growth rate) 

Daphnia magna: EC50 48h, acute (immobilisation) 

Daphnia magna: NOEC 21d, chronic (reproduction) 

Fish (Oryzias latipes): LC50 96h, acute (mortality) 

Fish (Oryzias latipes): NOEC, chronic (ELS-test). 

1.3. Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1. Date of QMRF: 

September 2022 

2.2. QMRF author(s) and contact details: 

[1] Erika Colombo Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy erika.colombo@marionegri.it https://www.marionegri.it/ 

[2] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

2.3. Date of QMRF update(s): 

NA 

2.4. QMRF update(s): 

NA 

2.5. Model developer(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Alberto Manganaro Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy alberto.manganaro@marionegri.it https://www.marionegri.it/ 

2.6. Date of model development and/or publication: 

The model was developed in 2019. 

2.7. Reference(s) to main scientific papers and/or software package: 

Benfenati E, Manganaro A, Gini G 

https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/


VEGA-QSAR: AI inside a platform for predictive toxicology 

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th 2013, Turin, Italy 

Published on CEUR Workshop Proceedings Vol-1107 

2.8. Availability of information about the model: 

The model is non-proprietary and the training set is available. 

2.9. Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1. Species: 

Oryzias latipes ( Japanese rice fish or japanese medaka) 

3.2. Endpoint: 

ECOTOX 6.1.2. Long-term toxicity to fish - OECD, Test No. 210: Fish, Early-life Stage Toxicity Test 

3.3. Comment on endpoint: 

NA 

3.4. Endpoint units:  

mg/L 

3.5. Dependent variable:  

NA 

3.6. Experimental protocol: 

OECD, Test No. 210: Fish, Early-life Stage Toxicity Test 

3.7. Endpoint data quality and variability: 

To build the new models for aquatic toxicity we collected     continuous experimental toxicity values from the 

Ministry of Environment in Japan.  Data  are  freely  available,  since  March  2016,  at  the  link 

https://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf.      

The experimental values came from aquatic toxicity tests performed according to OECD-GLP standards 

and the OECD official guidelines. 

Since the dataset from the Japanese Ministry of Environment     contained only 35 useable chemicals for 

chronic fish toxicity, we     decided to retrieve further data for chronic fish toxicity from ECOTOX Aquire 

Database ( https://cfpub.epa.gov/ecotox/) and PROMETHEUS dataset (Pizzo et al., 2016). 

Data extraction from ECOTOX Aquire Database ( https://cfpub.epa.gov/ecotox/, updated in July 2017) 

contains a large number of experimental data on fish chronic toxicity. Since these experimental values 

came from different experimental conditions, we tried to homogenize the data, pruning the dataset in 

accordance to the OECD guidelines. An advanced query has been performed using the following criteria:  

Taxonomic: Taxonomic name entry_animals_fish_standard test species Test results: Endpoints_ NOEC, 

effect measurement_mortality  

Test conditions: test location_laboratory, exposure media_freshwater, exposure types_flow-through, 

renewal Control types: all (unchecked “insufficient” and “unsatisfactory”) Chemical analysis: 

measuredPurity > 80% and “not reported”. If the purity was “not reported”, we checked the chemical grade 

(eliminated: experimental, practical and technical grades)  

Organism lifestage: egg(s), embryo(s), blastula, eyed egg or stage, eyed embryo  

Organism age: Pimephales promelas by 5d, Danio rerio by 5d, Oncorhynchus mykiss by 35dNumber of 

doses: 4Duration: 28d post-hatch (Pimephales promelas), 30d post-hatch (Danio rerio), 60d post-hatch 

(Oncorhynchus mykiss) Measured endpoint  

Data extraction from PROMETHEUS:  dataset includes experimental data from eChemPortal (2019) and 

several datasets extracted from OECD QSAR Toolbox. Since these experimental values came from 

different experimental conditions, we tried to homogenize the data pruning the dataset in accordance to 

OECD guidelines; in particular, we refined the data taking into account:  



Life stages: Measured effect (considering only mortality). 

 

4.Defining the algorithm - OECD Principle 2 

4.1. Type of model: 

The Fish Chronic (NOEC) toxicity model (IRFMN) –v.1.0.0 is based on 94 experimental data retrieved from 

Japanese Ministry of Environment (http://www.env.go.jp/en/chemi/sesaku/aquatic_Mar_2016.pdf), and 

selected according to the OECD TG 210, 212 and 215 requirements. The model is a Tree Ensemble Random 

Forest. 

4.2. Explicit algorithm: 

Tree Ensemble Random Forest 

To derive the models, we divided the data in training and test sets with the ratio of 80:20. In order to obtain 

a uniform distribution of the endpoint values between the two subsets we applied an activity and descriptors 

sampling method. We performed a Principal Component Analysis (PCA) on all the descriptors and we 

selected the first two principal components. We selected five random compounds, and then we picked the 

most dissimilar compound from the sample pool according to the first two principal components and the 

response using several combinations of distance metrics and scoring functions. Then we added the 

compound to the pool repeating the operation until we reached the desired number for the training set. 

Among the several algorithms used, we obtained the best results in terms of performance with a Random 

Forest called Tree ensemble. Tree ensemble builds a series of regression trees with different rows and 

different variables (according to certain parameters) and then it aggregates the results as an ensemble of 

models. It chooses the parameters for the variables of each tree and the number of compounds evaluating 

the performance of several models (Hyperparameter tuning Research) using as metric R2 of a Bootstrap 

(100 iterations) cross-validation on training set. 

4.3. Descriptors in the model: 

 Dragon 7.0 extension for KNIME 2 D descriptors.  

4.4. Descriptor selection: 

In order to select the variables, we used two methods implemented in R packages for each dataset: the 

genetic algorithm (gaselect package) and the Variable Selection Using Random Forest (VSURF) package. 

We imported both the pools of variables of each dataset into a KNIME workflow to derive the models 

4.5. Algorithm and descriptor generation:  

Dragon 7.0 extension for KNIME has been used to calculate the descriptors, resulting in 3839 2D 

descriptors. Then we applied a pruning process both to the compounds and to the descriptors pools. Firstly, 

we removed the compounds for which it was not feasible to calculate AlogP (octanol-water partition 

coefficient (Ghose and Crippen, 1986; Viswanadhan et al., 1993; Ghose et al., 1998)), as it is generally well 

acknowledged that this descriptor is the most correlated to the response. Then, to reduce the great number 

of variables, we removed all the descriptors with constant values (var(X) = 0), or which correlate over 0.95 

(Pearson) with at least one another descriptor. 

To derive the models, we divided the data in training and test sets with the ratio of 80:20. In order to obtain 

a uniform distribution of the endpoint values between the two subsets we applied an activity and descriptors 

sampling method. We performed a Principal Component Analysis (PCA) on all the descriptors and we 

selected the first two principal components. We selected five random compounds, and then we picked the 

most dissimilar compound from the sample pool according to the first two principal components and the 

response using several combinations of distance metrics and scoring functions. Then we added the 

compound to the pool repeating the operation until we reached the desired number for the training set. 

Among the several algorithms used, we obtained the best results in terms of performance with a Random 

Forest called Tree ensemble. Tree ensemble builds a series of regression trees with different rows and 

different variables (according to certain parameters) and then it aggregates the results as an ensemble of 

models. It chooses the parameters for the variables of each tree and the number of compounds evaluating 

the performance of several models (Hyperparameter tuning Research) using as metric R2 of a Bootstrap 

(100 iterations) cross-validation on training set. 

 



4.6. Software name and version for descriptor generation: 

[1] Dragon 7.0 extension for KNIME 

Calculation of several sets of molecular descriptors from molecular geometries (topological,geometrical, 

WHIM, 3D-MoRSE, molecular profiles, etc.)Prof. R.Todeschini - distributed by Talete srl, via Pisani 13, 

20124 Milano, Italyhttp://www.disat.unimib.it/chm 

[2] KNIME v3.5 

Open source KNIME Analytics Platform for creating data science – distribuited by KNIME AG 

Hardturmstrasse 66 8005 Zurich Switzerland 

4.7. Chemicals/Descriptors ratio: 

94/3839 

 

5.Defining the applicability domain - OECD Principle 3 

5.1. Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An 

overall AD index is calculated, based on a number of parameters, which relate to the results obtained on 

similar chemicals within the training and test sets and is defined in this way for this QSAR model´s 

predictions: 

If 1≥ AD index ≥ 0.85, the predicted substance is regarded in the Applicability Domain of the model. It 

corresponds to “good reliability of prediction 

If 0.85 > AD index ≥ 0.7, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to “moderate reliability of prediction 

If AD index < 0.7, the predicted substance is regarded out of the Applicability Domain of the model. It 

corresponds to “low reliability of prediction 

5.2. Method used to assess the applicability domain: 

The chemical similarity is measured with the algorithm developed for VEGA. Full details are in the VEGA 

website (www.vegahub.eu), including the open access paper describing it. The AD also evaluates the 

correctness of the prediction on similar compounds (accuracy), the consistency between the predicted 

value for the target compound and the experimental values of the similar compounds, the range of the 

descriptors, and the presence of unusual fragments, using atom centred fragments. 

These indices are defined in this way for this QSAR model: 
 

Similar molecules with known experimental value: 

This index takes into account how similar are the first two most similar compounds found. Values near 1 

mean that the predicted compound is well represented in the dataset used to build the model, otherwise the 

prediction could be an extrapolation. Defined intervals are: 

 

If 1 ≥ index > 0.85, strongly similar compounds with known experimental value in the training set have been 

found 

 

If 0.85 ≥ index > 0.7, only moderately similar compounds with known experimental value in the training set 

have been found 

 

If index ≤ 0.7, no similar compounds with known experimental value in the training set have been found 

 

Accuracy (average error) of prediction for similar molecules: 

This index takes into account the classification accuracy in prediction for the two most similar compounds 

found. Values near 1 mean that the predicted compounds fall in an area of the model's space where the 

model gives reliable predictions (no misclassifications), otherwise the lower is the value, the worse the 

model behaves. Defined intervals are: 



 

If index < 0.8, accuracy of prediction for similar molecules found in the training set is good 

 

If 1.5 > index ≥ 0.8, accuracy of prediction for similar molecules found in the training set is not optimal 

 

If index ≥ 1.5, accuracy of prediction for similar molecules found in the training set is not adequate 

 

Concordance for similar molecules:  

This index takes into account the difference between the predicted value and the experimental values of the 

two most similar compounds. Values near 0 mean that the prediction made disagrees with the values found 

in the model's space, thus the prediction could be unreliable. Defined intervals are: 

 

If index < 0.8, molecules found in the training set have experimental values that agree with the target 

compound predicted value 

 

If 1.5 > index ≥ 0.8, similar molecules found in the training set have experimental values that slightly 

disagree with the target compound predicted value 

 

If index ≥ 1.5, similar molecules found in the training set have experimental values that completely disagree 

with the target compound predicted value 

 

Maximum error of prediction among similar molecules: 

This index takes into account the maximum error in prediction among the two most similar compounds. 

Values near 0 means that the predicted compounds fall in an area of the model's space where the model 

gives reliable predictions without any outlier value. Defined intervals are: 

 

If index < 0.8, the maximum error in prediction of similar molecules found in the training set has a low value, 

considering the experimental variability 

 

If 1.5 > index ≥ 0.8the maximum error in prediction of similar molecules found in the training set has a 

moderate value, considering the experimental variability 

 

If index ≥ 1.5, the maximum error in prediction of similar molecules found in the training set has a high 

value, considering the experimental variability 

 

 

Atom Centered Fragments similarity check:  

 

This index takes into account the presence of one or more fragments that aren't found in the training set, or 

that are rare fragments. First order atom centered fragments from all molecules in the training set are 

calculated, then compared with the first order atom centered fragments from the predicted compound; then 

the index is calculated as following: a first index RARE takes into account rare fragments (those who occur 

less than three times in the training set), having value of 1 if no such fragments are found, 0.85 if up to 2 

fragments are found, 0.7 if more than 2 fragments are found; a second index NOTFOUND takes into 

account not found fragments, having value of 1 if no such fragments are found, 0.6 if a fragments is found, 

0.4 if more than 1 fragment is found. Then, the final index is given as the product RARE * NOTFOUND. 

Defined intervals are: 

 



If  index = 1, all atom centered fragment of the compound have been found in the compounds of the 

training set 

 

If 1 > index ≥ 0.7, some atom centered fragment of the compound have not been found in the compounds 

of the training set or are rare fragments 

 

If index < 0.7, a prominent number of atom centered fragments of the compound have not been found in 

the compounds of the training set or are rare fragments 

 

 

Model descriptors range check: 

This index checks if the descriptors calculated for the predicted compound are inside the range of 

descriptors of the training and test set. The index has value 1 if all descriptors are inside the range, 0 if at 

least one descriptor is out of the range. Defined intervals are: 

 

Index = TRUE, descriptors for this compound have values inside the descriptor range of the compounds of 

the training set 

Index = FALSE, descriptors for this compound have values outside the descriptor range of the compounds 

of the training set 

 

5.3. Software name and version for applicability domain assessment: 

VEGA (www.vegahub.eu) 

5.4. Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e., 

different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized form. 

 

 

6.Internal validation - OECD Principle 4 

6.1. Availability of the training set: 

Yes 

6.2. Available information for the training set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: Yes 

INChI: Yes 

MOL file: Yes 

NanoMaterial: No 

6.3. Data for each descriptor variable for the training set: 

All 

6.4. Data for the dependent variable for the training set: 

All 

6.5. Other information about the training set:  

Training set is composed of 75 

6.6. Pre-processing of data before modelling: 

SMILES creation and neutralization 



Firstly, we generated the SMILES structures from the chemical name and CAS RN for each substance 

using ChemCell (2019) and Marvin View (Marvin 17.28.0, 2012017, ChemAxon, 2019). We manually 

checked the correspondence and correctness among the obtained structures, chemical name and CAS RN 

among several websites and public database like ChemIDplus Advanced ( NIH, 2019), PubChem (NCBI, 

2019), ChemSpider (Royal Society of Chemistry, 2019), DSSTox. Then, we added several structures, 

which have not automatically generated. 

We normalized the SMILES with istMolBase 1.0.3. (in-house software), then we neutralized them using 

KNIME 3.5. Since pH is acritical issue in the experimental assays on algae, we considered ionized 

normalized SMILES and we calculated the major microspecies at pH 7.5 and 8.1 using JChem for Excel. 

We removed the compounds for which the SMILES changed depending on pH (in range 7.5-8.1). 

Cleaning of the structure 

We cleaned the datasets excluding the following compounds: 

metal complexes 

inorganics  

mixtures of structural isomers 

ambiguous structures 

non-ionic surfactant mixtures 

complex disconnected structures (e.g. polymers)  

chemicals whose correspondence name-CAS was not found 

UVCB 

salts; only the acid form was kept. 

Values cleaning 

We selected continuous experimental values excluding those reported as a range, greater/less than a 

certain threshold, or approximate values. We converted each experimental value from mg/l to mmol/l, on 

the basis of the molecular weight calculated from the chemical structure. We also removed the compounds 

for which the experimental toxicity values were higher than the experimental water solubility values. For this 

pourpose, we retrieved the experimental water solubility values mainly from a large database of more than 

4,000 chemicals that we pruned in the LIFE project ANTARES and from GuideChem and Sigma-Aldrich 

websites in the case we did not find the water solubilities elsewhere. 

Dealing with multiple values 

To deal with multiple continuous data we referred to the procedures described in ECHA guidance R.10 

(2008) for ecotoxicological continuous endpoints. In case the experimental conditions and the reliability of 

the studies were the same, we considered the ratio between the maximum and the minimum values; if it 

was higher than one log unit we eliminated the data. Then, we calculated the median, the arithmetic and 

geometric mean in mmol/l to check if there were differences among them. We found a very good correlation 

between the values of each combination (arithmetic vs geometric mean, arithmetic mean vs median, 

geometric mean vs median) and finally the geometric mean was preferred (ECHA guidance R.10, 2008). To 

normalize the data we performed two types of transformation, the logarithm of the geometric mean and the 

Box-cox transformation. Since the box-cox transformation gave better results in terms of normalization of 

the data, it was finally used to normalize the data. We excluded data falling outside the range (mean of the 

box-cox transformed values) ± 3*(standard deviation).  

6.7. Statistics for goodness-of-fit: 

Training set: n 75, R2 0.92, RMSE 0.77 

6.8. Robustness - Statistics obtained by leave-one-out cross-validation:  

NA 

6.9. Robustness - Statistics obtained by leave-many-out cross-validation:  

NA 

6.10. Robustness - Statistics obtained by Y-scrambling:  

NA 



6.11. Robustness - Statistics obtained by bootstrap: 

NA 

6.12. Robustness - Statistics obtained by other methods: 

NA 

 

7.External validation - OECD Principle 4 

7.1. Availability of the external validation set: 

Yes 

7.2. Available information for the external validation set: 

NA 

7.3. Data for each descriptor variable for the external validation set:  

NA 

7.4. Data for the dependent variable for the external validation set: 

NA 

7.5. Other information about the external validation set: 

NA 

7.6. Experimental design of test set: 

NA 

7.7. Predictivity - Statistics obtained by external validation: 

Test: n 19, R2 = 0.40, RMSE = 2.55 

Test set in AD: 0 

Test set could be out of AD: n 6, R2 0.62, RMSE 1.68 

Test set out AD: n 13, R2 0.30, RMSE 2.87 

7.8. Predictivity - Assessment of the external validation set: 

NA 

7.9. Comments on the external validation of the model: 

NA 

 

 

 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1. Mechanistic basis of the model:  

NA 

8.2. A priori or a posteriori mechanistic interpretation:  

a posteriori 

8.3. Other information about the mechanistic interpretation:  

NA 

 

9.Miscellaneous information 

9.1. Comments:  

NA 
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9.3. Supporting information: 

Training set(s)Test set(s)Supporting information: 

All available dataset are present in the model inside the VEGA software. 

 

10.Summary (JRC QSAR Model Database) 

10.1. QMRF number: 

To be entered by JRC 

10.2. Publication date: 

To be entered by JRC 

10.3. Keywords: 

To be entered by JRC 

10.4. Comments: 

To be entered by JRC 
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