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1.QSAR identifier 

1.1.QSAR identifier (title): 

Mutagenicity (Ames test) model (SarPy/IRFMN) (version 1.0.8) 

1.2.Other related models: 

The model has been built as a set of rules, extracted automatically with the SARpy software [1] from a large 

set of compounds and extends the previous version belonging to CAESAR model [2]. 

Both are implemented inside VEGA online platform, accessible at: http://www.vegahub.eu/ 

1.3.Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1.Date of QMRF: 

February 2022 

2.2.QMRF author(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Giuseppa Raitano Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy giuseppa.raitano@marionegri.it https://www.marionegri.it/ 

2.3.Date of QMRF update(s): 

NA 

2.4.QMRF update(s): 

NA 

2.5.Model developer(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Giuseppa Raitano Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy giuseppa.raitano@marionegri.it https://www.marionegri.it/ 

[3] Thomas Ferrari Department of Electronics and Information (DEI), Politecnico di Milano 

[4] Alberto Manganaro RCCS-Istituto di Ricerche Farmacologiche Mario Negri Via La Masa 19, 20156 Milano, 

Italy alberto.manganaro@marionegri.it 

[5] Dario Cattaneo Department of Electronics and Information (DEI), Politecnico di Milano 

[6] Nazanin Golbamaki Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy https://www.marionegri.it/ 

2.6.Date of model development and/or publication: 

2013 

2.7.Reference(s) to main scientific papers and/or software package: 

http://www.vegahub.eu/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/
mailto:alberto.manganaro@marionegri.it
https://www.marionegri.it/


[1] T. Ferrari, D. Cattaneo, G. Gini, N. Golbamaki Bakhtyari, A. Manganaro, E. Benfenati. Benfenati, 

“Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction”, SAR and 

QSAR in Environmental Research (2013), vol. 24 issue 5, 365-83. 

[2] Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis 

and relevant structural alerts. Chemistry Central Journal, 4(Suppl 1):S2 

http://www.journal.chemistrycentral.com/content/4/S1/S2 

[3] http://www.vegahub.eu/ 

[4] http://sarpy.sourceforge.net/  

[5] Benfenati E, Manganaro A, Gini G. VEGA-QSAR: AI inside a platform for predictive toxicology  

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th 2013, Turin, Italy  

Published on CEUR Workshop Proceedings Vol-1107 

2.8.Availability of information about the model: 

The model is non-proprietary and the training set is available. 

2.9.Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1.Species: 

Histidine-dependent strains of Salmonella typhimurium (Ames test)  

3.2.Endpoint: 

Mutagenicity bacterial reverse mutation test 

3.3.Comment on endpoint: 

Mutagenic toxicity is the capacity of a substance to cause genetic mutations. This property is of high public 

concern because it has a close relationship with carcinogenicity and eventually reproductive toxicity: most of 

the mutagenic substances are suspected to be carcinogenic substance in case a genotoxic mechanism is 

considered. Furthermore, mutagenicity in somatic cells causes concern for possible mutagenic effects in 

germ cell (heritable deceases).  

The Ames test is the basic in vitro assay to detect mutagens. The relevant test guideline covering this 

endpoint is OECD TG 471. The training set is based on test results from either the original version of the test 

guideline from 1983 or a newer version from 1997. The endpoint covers the DNA base-pair substitution and 

frameshift mutagenic mechanisms that are covered by the Ames tester strains: TA 1535, TA100, TA 98, and 

TA 1537 or TA97 or TA 97a. A part of the training set data additionally covers cross-linking mutagenic events 

measured by the inclusion of the E.coli WP2 or E.coli WP2 (pKM101) or TA 102 test strains. The test strains 

for DNA cross-links were included in the 1997 guideline update. As the training set does not systematically 

cover DNA cross-links, mutagenic substances acting by this mechanism may be under-predicted. 

The endpoint is measured on the parent compound and the metabolites generated in vitro by the employed 

S9 mix of enzyme-induced rodent liver homogenates. In a few cases, liver homogenates from hamsters may 

have been used. 

 

3.4.Endpoint units: 

Adimensional 

3.5.Dependent variable: 

The dependent variable is mutagenic effect, as binary classification: 0 (non-mutagenic), 1 (mutagenic) 

3.6.Experimental protocol: 

Ames test is an in vitro model of chemical mutagenicity and consists of a range of bacterial strains that 

together are sensitive to a large array of DNA-damaging agents. 

3.7.Endpoint data quality and variability: 



For the development and the validation of the model, a large set of compounds was used [3]. The estimated 

inter-laboratory reproducibility rate of S. typhimurium test data is 85% [4] 

 

4.Defining the algorithm - OECD Principle 2 

4.1.Type of model: 

The Mutagenicity (Ames test) model (SarPy/IRFMN) (version 1.0.7 provides a qualitative prediction of 

mutagenicity on Salmonella typhimurium (Ames test). It is based on a set of rules extracted from set of 

compounds [3] by SARpy software without any ‘a priori’ knowledge. 

The original work [1] has been extended, resulting in two sets of rules for mutagenicity (112 rules) and non-

mutagenicity (93 rules).  

 

 

 

4.2.Explicit algorithm: 

The algorithm generates substructures of arbitrary complexity, and the fragment candidates to become 

structural alerts (SAs) are automatically selected based on their prediction performance on a training set. 

Fragmentation is done directly on the SMILES notation of structures. 

If at least one mutagenicity rule is matching with the given compound, a “Mutagenic” prediction is given; if 

only one or more non-mutagenicity rule is matching, a “Non-Mutagenic” prediction is given; if no rules match 

with the given compound, a “Possible Non-Mutagenic” prediction is given. 

4.3.Descriptors in the model: 

Fragments authomatically generate and statistically evaluated. 112 rules for mutagenicity and 93 

rules non-mutagenicity.  

Following, the list of the 112 rules for mutagenicity, expressed as SMARTS strings:  

SM 1: O=[N+]([O-])c1ccc2ccccc2c1  

SM 2: O=NN(C)C  

SM 3: n1ccc(N)c2ccc(cc12)  

SM 4: c1oc(cc1)[N+](=O)[O-]  

SM 5: O=[N+]([O-])c1ccc(c2ccccc2)c(c1)  

SM 6: Nc4ccc(N)cc4N  

SM 7: C1C=Cc2ccccc2C1  

SM 8: N1CC1  

SM 9: c1cc([N+](=O)[O-])sc1  

SM 10: n1ccnc2c1ccc(N)c2  

SM 11: c1ccc2c(c1)cc3ccc(cc3c2)C  

SM 12: Nc1c(ncn1)  

SM 13: n1cc(nc2ccc3c(ncn3C)c12)  

SM 14: O(c1ccccc1)CC2OC2  

SM 15: O=C1c2ccccc2C(=O)c3c(O)ccc(O)c13  

SM 16: N(O)c1ccc(C=C)cc1  

SM 17: c1ccc2ccc3ccc(cc3c2c1)N  

SM 18: O(Cc1cccc2ccccc12)C  

SM 19: O=C(c1ccc(cc1)NO)  

SM 20: O=C(c1ccccc1)Cl  

SM 21: C1=Cc2cccc3cccc1c23  

SM 22: O1CC1CCc2ccc(cc2)  

SM 23: C(O)C=CCl  



SM 24: OCC(CBr)  

SM 25: [N-]=[N+]  

SM 26: n1c2ccc(cc2c(cc1))C  

SM 27: O=CC1(OC1)C  

SM 28: n1cccc2c1ccc3c2ncn3  

SM 29: c2nc3C(=O)C=CC(=O)c3cc2  

SM 30: O=Nc1ccc(OC)cc1  

SM 31: SC(=CCl)Cl  

SM 32: O=C1c2cccc(N)c2C(=O)c3ccccc13  

SM 33: Nc1ccc2c(c1)c3ccccc3n2  

SM 34: Oc1ccc2ccc3ccc(cc3c2c1)  

SM 35: C(c1ccccc1)COC=C  

 

SM 36: c1cc2cccc3c4cc(ccc4c(c1)c23)  

SM 37: N(O)c1ccc(Oc2ccccc2)cc1  

SM 38: c1ccc2c(c1)c3ccccc3n2  

SM 39: O(Cc1cccc2ccccc12)  

SM 40: c1ccc2c3ccccc3CCc2c1  

SM 41: n1cc2ccccc2s1  

SM 42: P(=O)(N)N(C)CC  

SM 43: C(N)Cl  

SM 44: c1ccc(C=Cc2ccc(N)cc2)cc1  

SM 45: c1cc(ccc1NCCCl)  

SM 46: N(c1ccc(N=Nc2ccccc2)cc1)C  

SM 47: O=C(NCc1ccccc1)C  

SM 48: c1cc2ccc3cccc4ccc(c1)c2c34  

SM 49: Nc1cccc(c1)c2ccccc2  

SM 50: O=[N+]([O-])c1cccc2cccc(c12)  

SM 51: O=C(Nc1ccc(cc1)c2ccccc2)  

SM 52: O=Cc1cccc(c1)[N+]  

SM 53: O=[N+]([O-])c1cc(N)c(c(N)c1)  

SM 54: c1ccc(Oc2ccc(N)cc2)cc1  

SM 55: COC=CC=CC  

SM 56: N(=N)NC  

SM 57: ONc1ccc(cc1)S  

SM 58: O1CC1Cc2ccc(cc2)  

SM 59: O=C(c1ccccc1O)c2ccccc2  

SM 60: Nc1ccc(cc1)c2ccccc2  

SM 61: c1ccc2c(c1)ccc3c2cc4ccccc4c3  

SM 62: c1ccc2c(c1)cc3ccc(cc3c2C)  

SM 63: c1ccc2c(ccc3c4ccccc4ccc23)c1  

SM 64: c1c2ccccc2nc3ccccc13  

SM 65: O=CC=C(C(=O)c1ccccc1)  

SM 66: n1cc(cc2c1ncn2)  

SM 67: Nc1nccn1C  

SM 68: C1C(C=C(C))C1(C)C  



SM 69: Nc1ccc(cc1)[N+](=O)[O-]  

SM 70: Nc1ccc(cc1N)  

SM 71: N=CC=C  

SM 72: O=[N+]([O-])c1ccc(cc1)CO  

SM 73: CCNCCCl  

SM 74: O=S(=O)(OCC)  

SM 75: c1ccc2c3ccccc3Cc2c1  

SM 76: c1c2ccccc2n(c1)C  

SM 77: C(CBr)Br  

SM 78: Nc1ccccc1F  

SM 79: c1ccc(N)c(c1N)C  

SM 80: c1ccc2c(c1)ccc3cc(ccc23)  

 

SM 81: c1ccc2c(c1)cc3ccccc3c2  

SM 82: c1ccc2ccccc2c1C  

SM 83: Nc1ccc(cc1)Cc2ccccc2  

SM 84: Oc1ccc2Cc3ccccc3Oc2c1  

SM 85: C(Cl)(Cl)Cl  

SM 86: O(c1ccccc1N)C  

SM 87: NN(c1ccccc1)  

SM 88: n1c(N)n(c2ccccc12)  

SM 89: O=C(N(O))C  

SM 90: n1ccnc2c1cccc2  

SM 91: c1cc(c(N)cc1N)C  

SM 92: OCC1OC1  

SM 93: C(C)Br  

SM 94: C(OCC)N  

SM 95: Nc1cccc(N)c1  

SM 96: c1c(nn(c1))  

SM 97: C1OC1  

SM 98: C(O)N  

SM 99: c1ccc2cccnc2c1  

SM 100: N=NC  

SM 101: O=CC(=C)Cl  

SM 102: n1cnc2c(ncn2)c1N  

SM 103: NNCC  

SM 104: Cc2ccc(N)cc2  

SM 105: Nc1ccc(N)cc1  

SM 106: CCCl  

SM 107: C=NN1N=Nc2c([nH]c3ccccc23)C1=O  

SM 108: NC([N+])  

SM 109: n1c2ccc(cc2[s+]c3cc(N)c(cc13))N  

SM 110: O=Nn1cc(c2ccccc12)CC  

SM 111: O=CC(=CC)C=CC  

SM 112: O=C1OCC1 

 



Following, the list of the 93 rules for non mutagenicity, expressed as SMARTS strings:  

SM 113: C(O)CCCCCCCC=CCC  

SM 114: CCOc1ccc(Cl)cc1  

SM 115: C(NC(C(=O))C)C(NC)  

SM 116: c1(c(ccc(c1)CCCCCC))O  

SM 117: c1c(c(C(C)(C)C)cc(c1)C)  

SM 118: c1(c(C(=O)O)cccc1)C(=O)  

SM 119: S(=O)(=O)(N)c1ccc(N)cc1  

SM 120: n1c(nc(nc1))  

SM 121: C(=O)(C(CCC(=O)O))O  

SM 122: CCOCCOCCOCCO  

SM 123: CC(=O)OCC(CC)CCCC  

SM 124: P(O)OCCCCC  

SM 125: N(c1ccccc1)CCCNC  

SM 126: c1(C(=O)OC)c(N)cccc1  

SM 127: C(C)(Oc1ccccc1)(C)C  

SM 128: N(CCO)(CCCC)C  

SM 129: C(=C)CCCl  

SM 130: C(=O)(C(=C)C)OCCCCC  

SM 131: Oc1ccc2C=C(COc2c1)c3ccccc3  

SM 132: c1(nc2c(o1)cccc2)c3ccccc3  

SM 133: c1(c(c(cc(c1)))O)c2c(c(cc(c2)))O  

SM 134: n1c(cc(c2c1cccc2))CO  

SM 135: c1c(c(ccc1C(O)CNC)O)  

SM 136: O(C(=O))C(=O)  

SM 137: C(=O)(CCC(=O)O)  

SM 138: S(=O)(=O)(c1ccccc1)N  

SM 139: c1c(c(cc(c1Cl)Cl)Cl)  

SM 140: C(C=C)(CCC=C)  

SM 141: c1(CCCCCC)ccccc1  

SM 142: N(C)(CCCC)CCCC  

SM 143: C(=O)(O)CCCCCCCC  

SM 144: C(=O)(N(c1ccccc1))N  

SM 145: C1(C(CCC(C1)C)C)O  

SM 146: c1(C(=O)OCC)ccccc1  

SM 147: c1c(C(F)(F)F)cccc1  

SM 148: C(=O)CS  

SM 149: O(c1ccccc1)CC(CNC(C))O  

SM 150: C(F)(F)C  

SM 151: c1cc(c(c(c1)Br)O)  

SM 152: c1(Br)ccc(cc1)C  

SM 153: SCCCC  

SM 154: C(=O)CC(=O)C  

SM 155: N(CCO)(CCO)C  

SM 156: C(=O)N(C)CCC  

SM 157: CCCCCCCCCCCC  



SM 158: c1(c(ccc(c1)C=CC)O)  

SM 159: c1cc(c(cc1)Cl)Cl  

SM 160: C=CC=C(CCC)C  

SM 161: c1ccc(NC(C)C)cc1  

SM 162: C1CC(CC(C1))(C)C  

SM 163: CCCCCCC  

SM 164: C(C(OC)(C)C)  

SM 165: N#CCC  

SM 166: C(=C(CC)O)  

SM 167: CN1CN=CC=C1  

SM 168: S(=O)(=O)c1ccc(N)cc1  

SM 169: CC(CC)CCC  

SM 170: C(=O)(c1ccccc1)OC  

SM 171: c1(F)ccc(cc1)C  

SM 172: C(=Cc1ccccc1)C(=O)c2ccccc2  

SM 173: [nH]1cc(c2c1cccc2)CC  

SM 174: P(=S)(OCC)OC  

SM 175: [N+](C)(C)C  

SM 176: OCCN(C)C  

SM 177: C(=O)CCCCC  

SM 178: C(=O)(CC(C))OCC  

SM 179: CC#N  

SM 180: C(=C(CC)C)C=O  

SM 181: O=C1NC=NC=C1  

SM 182: CCCC(C)C  

SM 183: c1(cc(ccc1)Cl)Cl  

SM 184: c12c(cc(cc2)O)ccc(S)c1  

SM 185: PC  

SM 186: OCC(CO)(C)C  

SM 187: OC(=O)C(=C)C  

SM 188: C(=O)(C)OCCCC  

SM 189: c1(C(=O)O)c(ccc(c1))O  

SM 190: c1(c(Cl)cccc1)C  

SM 191: Cc1cc(c(cc1)OC)OC  

SM 192: C#N  

SM 193: Cc1ccc(Cl)cc1  

SM 194: Nc1ccc2C=CCOc2c1  

SM 195: C(=O)(O)Cc1ccccc1  

SM 196: c1(cc(ccc1CCC)O)O  

SM 197: N(c1ccccc1)c2ccccc2  

SM 198: C=NO  

SM 199: C(=S)(N)  

SM 200: c1(CC)cc(OC)ccc1  

SM 201: c1(nc2c(s1)cccc2)  

SM 202: OCCOCCO  

SM 203: N(C)(CCN)c1ccccc1  



SM 204: [N+]([O-])CC  

SM 205: S(=O)(=O)(c1cc(c(cc1))N)O  

 

4.4.Descriptor selection: 

NA 

4.5.Algorithm and descriptor generation: 

NA 

4.6.Software name and version for descriptor generation: 

NA 

4.7.Chemicals/Descriptors ratio: 

NA 

 

5.Defining the applicability domain - OECD Principle 3 

5.1.Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An overall 

AD index is calculated, based on a number of parameters, which relate to the results obtained on similar 

chemicals within the training and test sets.  

Indices are calculated on the first k = 3 most similar molecules, each having Sk similarity value with the target 
molecule. 
 
Similarity index (IdxSimilarity) is calculated as: 
 
∑ 𝑆𝑘𝑘

𝑘
× (1 − 𝐷𝑖𝑎𝑚2) 

 
where Diam is the difference in similarity values between the most similar molecule and the k-th molecule. 
 
Accuracy index (IdxAccuracy) is calculated as: 
 
∑ 𝑙𝑜𝑔𝑐 (1 + 𝑆𝑐)

∑ 𝑙𝑜𝑔𝑘 (1 + 𝑆𝑘)
 

 
where the molecules with c index are the subset of the k molecules where the prediction of the model matches 
with the experimental value of the molecule. 
 
Concordance index (IdxConcordance) is calculated as: 
 
∑ 𝑙𝑜𝑔𝑐 (1 + 𝑆𝑐)

∑ 𝑙𝑜𝑔𝑘 (1 + 𝑆𝑘)
 

 
where the molecules with c index are the subset of the k molecules where the experimental value of the 
molecule matches with the prediction made for the target molecule. 
 
ACF contribution (IdxACF) index is calculated as 
 
𝐴𝐶𝐹 = 𝑟𝑎𝑟𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
 
where: rare is calculated on the number of fragments found in the molecule and found in the training set in 
less than 3 occurences as following: if the number is 0, rare is set to 1.0; if the number is 1, rare is set to 0.6; 
otherwise rare is set to 0.4 
 
missing is calculated on the number of fragments found in the molecule and never found in the training set 
as following: if the number is 0, missing is set to 1.0; if the number is 1, missing is set to 0.6; otherwise missing 
is set to 0.4 
 
AD final index is calculated as following: 



 

𝐴𝐷𝐼 = (𝐼𝑑𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦0.5 × 𝐼𝑑𝑥𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦0.25 × 𝐼𝑑𝑥𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒0.25) × 𝐼𝑑𝑥𝐴𝐶𝐹 

 

If 1 ≥ AD index ≥ 0.9, the predicted substance is regarded in the Applicability Domain of the model. It 

corresponds to good reliability of prediction. 

If 0.9 > AD index ≥ 0.66, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to moderate reliability of prediction. 

If AD index < 0.65, the predicted substance is regarded out of the Applicability Domain of the model and 

corresponds to low reliability of prediction.  

5.2.Method used to assess the applicability domain: 

The chemical similarity is measured with the algorithm developed for VEGA. Full details are in the VEGA 

website (www.vegahub.eu), including the open access paper describing it [5]. The AD also evaluates the 

correctness of the prediction on similar compounds (accuracy), the consistency between the predicted value 

for the target compound and the experimental values of the similar compounds, the range of the descriptors, 

and the presence of unusual fragments, using atom centered fragments. 

5.3.Software name and version for applicability domain assessment: 

VEGA 

Included in the VEGA software and automatically displayed when running the model 

emilio.benfenati@marionegri.it 

https://www.vegahub.eu/ 

5.4.Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e., 

different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized form. 

 

6.Internal validation - OECD Principle 4 

6.1.Availability of the training set: 

Yes 

6.2.Available information for the training set: 

CAS RN: Yes 

Chemical Name: Yes 

Smiles: Yes 

Formula: Yes 

INChI: Yes 

MOL file: Yes 

NanoMaterial: No 

6.3.Data for each descriptor variable for the training set: 

No 

6.4.Data for the dependent variable for the training set: 

All 

6.5.Other information about the training set: 

The training set counts 3367 compounds 

6.6.Pre-processing of data before modelling: 

All chemical structures have been checked manually. 

6.7.Statistics for goodness-of-fit: 

Following, statistics obtained applying the model to its original dataset, if “Possible Non-Mutagenic” is taken 

as “Non-Mutagenic” but without taking the ADI into account: 



Training set: n = 3367 (1883 positive, 1484 negative) 

Accuracy = 0.82 

Specificity = 0.77 

Sensitivity = 0.86 

TP 1613, TN 1148, FP 336, FN 270 

 

Following, statistics obtained applying the model to its test set, if “Possible NON-Mutagenic” is taken as 

“NON-Mutagenic” without taking the ADI into account: 

Test set: n = 837 (465 positive, 372 negative) 

Accuracy = 0.81 

Specificity = 0.76 

Sensitivity = 0.86 

TP 398, TN 283, FP 89, FN 18 

6.8.Robustness - Statistics obtained by leave-one-out cross-validation: 

NA 

6.9.Robustness - Statistics obtained by leave-many-out cross-validation: 

NA 

6.10.Robustness - Statistics obtained by Y-scrambling: 

NA 

6.11.Robustness - Statistics obtained by bootstrap: 

NA 

6.12.Robustness - Statistics obtained by other methods: 

NA 

 

7.External validation - OECD Principle 4 

7.1.Availability of the external validation set: 

NA 

7.2.Available information for the external validation set: 

The external validation set is composed of a set of data not in common with the training and the test set of 

the model. Those data were selected from a big dataset comprising public and proprietary data [6] [7]. 

7.3.Data for each descriptor variable for the external validation set: 

NA 

7.4.Data for the dependent variable for the external validation set: 

NA 

7.5.Other information about the external validation set: 

The external validation set is composed of 14517 substances, 2878 experimentally positive and 11639 

experimentally negative on Ames test. 

7.6.Experimental design of test set: 

No selection of chemicals prior to experimentation 

7.7.Predictivity - Statistics obtained by external validation: 

Four compounds were not predicted (molecule error: unable to normalize SMILES string) then the available 

predictions for the statistical assessment were 14513. 

We applied AD index thresholds to perform predictions on the external validation set and if “Possible NON-

Mutagenic” is taken as “NON-Mutagenic” the results are: 

 



The predictions of 3129 substances are in AD. AD index >=0.9.   

Sensitivity Specificity Accuracy MCC 

0.81  0.86  0.85  0.63 

TP 646, TN 2001, FP 331, FN 151 

 

The predictions of 5712 substances could be out of the AD. 0.9> AD index >= 0.65 

Sensitivity Specificity Accuracy MCC 

0.67 0.74  0.73  0.33 

 

TP 676, TN 3480, FP 1221, FN 335 

 

The predictions of 5672 substances are out of the AD. AD index <0.65 

Sensitivity Specificity Accuracy MCC 

0.55 0.52  0.53  0.05 

TP 584, TN 2399, FP 2203, FN 486 

 

 

7.8.Predictivity - Assessment of the external validation set: 

NA 

7.9.Comments on the external validation of the model: 

The distribution of the external validation dataset is unbalanced: the 80% of the compounds is non mutagenic 

experimentally. 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1.Mechanistic basis of the model: 

The model includes SAs to identify both toxic and non-toxic compounds. 

The VEGA system provides, in the final PDF report for the prediction, a set built with the most similar 

compounds found in the training and test set of the model. An expert-based analysis of these compounds 

like the predicted one, which are provided with their experimental activity, can lead to a further mechanistic 

interpretation of the results given by the model. 

8.2.A priori or a posteriori mechanistic interpretation: 

A posteriori: the fragments identified as statistically associated to the toxic or non toxic class can be 

investigated to explore the mechanistic basis of the model. 

8.3.Other information about the mechanistic interpretation: 

NA 

 

9.Miscellaneous information 

9.1.Comments: 

NA 
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Training set(s)Test set(s)Supporting information: 

All available datasets are present in the model inside the VEGA software. 
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