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1.QSAR identifier 

1.1.QSAR identifier (title): 

Persistence (sediment) quantitative model (IRFMN) - v. 1.0.1 

1.2.Other related models: 

No 

1.3.Software coding the model: 

VEGA (https://www.vegahub.eu/) 

The VEGA software provides QSAR models to predict tox, ecotox, environ, phys-chem and toxicokinetic 

properties of chemical substances. 

emilio.benfenati@marionegri.it 

 

2.General information 

2.1.Date of QMRF: 

20-10-2022 

2.2.QMRF author(s) and contact details: 

[1] Emilio Benfenati Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy emilio.benfenati@marionegri.it https://www.marionegri.it/ 

[2] Elena Boriani boriani.elena@gmail.com 

2.3.Date of QMRF update(s): 

No update  

2.4.QMRF update(s): 

No update 

2.5.Model developer(s) and contact details: 

[1] Anna Lombardo Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy anna.lombado@marionegri.it https://www.marionegri.it/ 

[2] Alberto Manganaro Istituto di Ricerche Farmacologiche Mario Negri - IRCSS Via Mario Negri 2, 20156 

Milano, Italy alberto.manganaro@marionegri.it https://www.marionegri.it/ 

https://www.vegahub.eu/contacts/ benfenati.emilio@gmail.com https://www.vegahub.eu 

2.6.Date of model development and/or publication: 

2018 

2.7.Reference(s) to main scientific papers and/or software package: 

[1] Benfenati E, Roncaglioni A, Lombardo A, Manganaro A. Integrating QSAR, Read-Across, and Screening 

Tools: The VEGAHUB Platform as an Example. Advances in Computational Toxicology; Springer; 2019. p. 

365-81. 

[2] Benfenati E, Manganaro A, Gini G. VEGA-QSAR: AI inside a platform for predictive toxicology  

Proceedings of the workshop "Popularize Artificial Intelligence 2013", December 5th 2013, Turin, Italy  

Published on CEUR Workshop Proceedings Vol-1107 

 

 

https://www.marionegri.it/
https://www.marionegri.it/
https://www.marionegri.it/


2.8.Availability of information about the model: 

The model is non-proprietary and the training set is available. 

2.9.Availability of another QMRF for exactly the same model: 

Another QMRF is not available. 

 

3.Defining the endpoint - OECD Principle 1 

3.1.Species: 

Persistence in sediment measured as half-life in days  

3.2.Endpoint: 

ENV FATE 5.2.2. Biodegradation in water and sediment: simulation tests. OECD. Test No. 308: Aerobic and 

Anaerobic Transformation in Aquatic Sediment Systems (2002) [3] 

3.3.Comment on endpoint: 

The model is based on half-life test ultimate biodegradation data and provide evaluation of persistence 

property in the sediment compartment. 

3.4.Endpoint units: 

Days. 

3.5.Dependent variable: 

Log(days) 

3.6.Experimental protocol: 

We cleaned the data following strict eligibility criteria based on the OECD 308 test guideline [3]. For the 

procedure, see point 3.7 (data quality). 

3.7.Endpoint data quality and variability: 

Dataset cleaning consists of two different parts: a data and a structure cleaning. The first is endpoint and 

goal dependent. The data have been cleaned considering the testing guidelines, the regulatory thresholds 

and the goals of the work. Considering the low quality of the data reported in the other sources, we 

maintained only the ECHA and Gouin et al., 2004 data. ECHA were selected applying the OECD testing 

guideline 308. 

The first source of data, Gouin et al. (2004), contains categorical data (see 6.6.Pre-processing of data 

before modelling) and no details on the test. Reactivity data for these 233 substances were obtained from 

the physical–chemical handbook available on CD by Mackay et al. (1999). In these handbooks, half-lives 

are assigned on a semi-decade logarithmic scale to one of nine classes as follows: (1) 5 h (range: 0– 10 h), 

(2) 17 h (10–30), (3) 55 h (30–100), (4) 170 h (100– 300), (5) 550 h (300–1000), (6) 1700 h (1000–3000), 

(7) 5500 h (3000–10 000), (8) 17 000 h (10 000–30 000) and (9) 55 000 h (30 000–100 000). For example, 

a chemical with a half-life in the range 30–100 h is assigned to category 3 with a geometric mean of 55 h. It 

is possible for the scale to be extended for super-persistent compounds (e.g. classes 10, 11 etc.). To the 

extent possible, these allocations were made by careful analysis of experimental degradation rate data, but 

inevitably a high degree of scientific judgment was involved. It is recognized that by allocating a chemical to 

a half-life class, there is likely to be an estimation error of ±1 to 2 classes (Mackay et al., 1999). []For this 

dataset, we eliminated the substances whose ranges are between two persistence classes (not persistent, 

or nP; persistent, or P1; very persistent, or vP2) and the compounds with a range greater than 30 days.  

The other source, the ECHA registration data (extracted from the ECHEMPORTAL website 

(https://www.echemportal.org/echemportal/) in October 2016 and February 2017) [2], contains continuous 

values and some details on the test. For this source, we eliminated data with reliability 3, not tested in lab, 

without a guideline or based on guidelines different from the OECD 308. After the manual check, we 

 
1  P: Degr.half-life (of parent compound or any of its degr. products) > 40 days in fresh surface water  

 

 
2 vP: Degr.half-life (of parent compound or any of its degr. products) > 60 days in fresh surface water 

 



maintained all the data obtained in aerobic conditions and tested on the identity substance. The mixture of 

substances or the data not found on the web site of the ECHA were eliminated. We identified the outliers in 

four ways: 

- Concordance (maximum - minimum): we considered outliers all the values with a difference greater 

than 30 days (arbitrary chosen). 

- Concordance (maximum/minimum): we considered outliers all the values with a value greater than 3. 

- Concordance (class range): we considered outliers all the values with the minimum and the maximum 

reported in different classes (nP, P and vP). 

Log half-life distribution: we verified the normal distribution (with the R tool) and we considered outliers all 

the values outside the range: average ± 3SD (standard deviation). 

We performed the second part, the structure cleaning, using an in-house KNIME workflow that searches for 

the structures in the DSStox data base (US EPA.c, 2019) and through the CIR (2019) node both from the 

name and the CAS no. Once neutralised and normalised with the VEGA node, the software compares the 

structures and asks for a manual check, using online databases like ChemIDplus (NIH, 2019), PubChem 

compound (https://www.ncbi.nlm.nih.gov/pccompound), Sigma-Aldrich (Merck KGaA, 2019) and 

GuideChem (http://www.guidechem.com/) in case of no agreement. The workflow checks for duplicates 

too[6]. We eliminated all doubtful compounds, the inorganic atoms, the mixtures of isomers (excluded 

stereoisomers), the mixtures of compounds, the UVCB (Chemical Substances of Unknown or Variable 

Composition, Complex Reaction Products and Biological Materials), the metalorganic compounds and the 

macromolecules. We finally obtained a dataset of 221 molecules for persistency in sediment. We split the 

dataset into a training (177 mono constituent organic compounds) and a test sets (44 mono constituent 

organic compounds) using a stratified sampling and forcing ECHA substances in the test set.  

4.Defining the algorithm - OECD Principle 2 

4.1.Type of model: 

Counter-propagation neural network (CPANN) present at NIC (https://www.ki.si/en/departments/). 

4.2.Explicit algorithm: 

We calculated a wide set (1022) of 2D molecular descriptors with the VEGA core libraries. Then we used 

an in-house tool developed in the R software to select the best descriptors set to be used in each of the 

three models.  

The approach employed is based on a forward selection technique. It starts from the descriptor that has the 

highest correlation with the experimental values; then, at each iteration, all the remaining descriptors are 

tested and the one leading to the best model is added. The models in this process are simple linear 

regressions, applied with a bootstrap cross-validation approach: 500 iterations — for each one the 

regression model is built on a random subset (60% of the original training set) and tested on the remaining 

40% with the calculation of a fitness function (a linear combination of the R squared coefficient and the root 

mean square error (RMSE)). 

The progressive addition of descriptors to the model increases the cross-validation performance up to a 

plateau, where the optimal number of descriptors is reached, and adding further descriptors causes over-

fitting. 

Once the descriptors were selected, the final models were developed using counter-propagation neural 

network (CPANN) software developed by the National Institute of Chemistry, the CPANNatNIC [5]. 

4.3.Descriptors in the model: 

[1] MLogP MLogP Descriptor Moriguchi LogP 

[2] Gmax maximum E-State value 

[3] CATS2D_3_DL CATS 2D Descriptors CATS 2D D-L at topological distance 3 

[4] EEig10dm eigenvalue n. 10 from edge adjacency mat. weighted by dipole moment 

[5] BEL8p smallest eigenvalue n. 8 of Burden matrix weighted by polarizability 

[6] C-002 CH2R2 Atom-centred fragments 

[7] B4(C..Cl) Topological Distances Descriptors Presence/absence of C-Cl at topological distance 1 

[8] B3(C..C) Topological Distances Descriptors Presence/absence of C-C at topological distance 3 



4.4.Descriptor selection: 

Descriptors are selected using an in-house tool developed in R (with a bootstrap cross-validation approach) 

and then implemented in java using cdk libraries. 

4.5.Algorithm and descriptor generation: 

We calculated the descriptors using the pool of descriptors implemented in VEGA and we selected the most 

relevant ones using an in-house validated forward selection in R (with a bootstrap cross-validation 

approach). The selected number of descriptors is 8.  

4.6.Software name and version for descriptor generation: 

VEGA implemented descriptors available in-house. 

4.7.Chemicals/Descriptors ratio: 

177/8 = 22 

 

5.Defining the applicability domain - OECD Principle 3 

5.1.Description of the applicability domain of the model: 

The Applicability Domain (AD) is assessed using the original algorithm implemented within VEGA. An 

overall AD index is calculated, based on a number of parameters, which relate to the results obtained on 

similar chemicals within the training and test sets  (c.f. point 5.2 below) 

ADI is defined in this way for this QSAR model´s predictions: 

If 1 ≥ AD index > 0.85, the predicted substance is regarded in the Applicability Domain of the model. It 

corresponds to “good reliability” of prediction. 

If 0.85 ≥ AD index > 0.7, the predicted substance could be out of the Applicability Domain of the model. It 

corresponds to “moderate reliability” of prediction. 

If AD index ≤ 0.7, the predicted substance is regarded out of the Applicability Domain of the model. It 

corresponds to “low reliability” of prediction. 

 

Indices are calculated on the first k = 2 most similar molecules, each having Sk similarity value with the 
target molecule. 
 
Similarity index (IdxSimilarity) is calculated as: 
 
∑ 𝑆𝑘𝑘

𝑘
× (1 − 𝐷𝑖𝑎𝑚2) 

 
where Diam is the difference in similarity values between the most similar molecule and the k-th molecule. 
 
Accuracy index (IdxAccuracy) is calculated as: 
 
∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predc is the c-th molecule 
predicted value by the model. 
 
Concordance index (IdxConcordance) is calculated as: 
 

∑ |𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑡𝑎𝑟𝑔𝑒𝑡|
𝑘
𝑐

𝑘
 

 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule. 
 
Max Error index (IdxMaxError) is calculated as: 
 
𝑚𝑎𝑥(|𝑒𝑥𝑝𝑐 − 𝑝𝑟𝑒𝑑𝑐|) 



 
where expc is the experimental value of the c-th molecule in the training set and predtarget is the predicted 
value for the input target molecule, evaluated over the k molecules. 
 
ACF contribution (IdxACF) index is calculated as 
 
𝐴𝐶𝐹 = 𝑟𝑎𝑟𝑒 × 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
 
where: rare is calculated on the number of fragments found in the molecule and found in the training set in 
less than 3 occurences as following: if the number is 0, rare is set to 1.0; if the number is 1, rare is set to 
0.6; otherwise rare is set to 0.4 
 
missing is calculated on the number of fragments found in the molecule and never found in the training set 
as following: if the number is 0, missing is set to 1.0; if the number is 1, missing is set to 0.6; otherwise 
missing is set to 0.4 
 
Descriptors Range (IdxDescRange) index is calculated as 1.0 if all molecular descriptors used in the 
prediction fall within the range of descriptors used in the whole training set, 0.0 otherwise. 
 
AD final index is calculated as following: 
 
𝐴𝐷𝐼 = 𝐼𝑑𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 × 𝐼𝑑𝑥𝐴𝐶𝐹 × 𝐼𝑑𝑥𝐷𝑒𝑠𝑐𝑅𝑎𝑛𝑔𝑒 
 
The initialADI index is the used together with the other sub-indices to calculate the final ADI, on the basis of 
the assessment class in which each sub-index falls: 
 

IdxAccuracy  ≥ IdxConcordance ≥ IdxMaxError ≥ InitialADI ≥ ADI 

1.2 1.2 1.2 0.85 1.0 

0.6 0.6 0.6 0.7 0.85 

All other cases 0.7 

 

 

5.2.Method used to assess the applicability domain: 

The Applicability Domain and the chemical similarity is measured with the algorithm developed for VEGA. 

Full details are in the VEGA website (www.vegahub.eu), including the open access paper describing it [4]. 

The VEGA AD also evaluates the correctness of the prediction on similar compounds (accuracy), the 

consistency between the predicted value for the target compound and the experimental values of the 

similar compounds, the range of the descriptors, and the presence of unusual fragments, using atom 

centred fragments. 

These indices are defined in this way for this QSAR model: 

 

Similar molecules with known experimental value: 

This index takes into account how similar are the first two most similar compounds found. Values near 1 

mean that the predicted compound is well represented in the dataset used to build the model, otherwise the 

prediction could be an extrapolation. Defined intervals are: 

 

If 1 ≥ index > 0.85, strongly similar compounds with known experimental value in the training set have been 

found 

 

If 0.85 ≥ index > 0.7, only moderately similar compounds with known experimental value in the training set 

have been found 

 

If index ≤ 0.7, no similar compounds with known experimental value in the training set have been found 

 



Accuracy (average error) of prediction for similar molecules: 

This index takes into account the classification accuracy in prediction for the two most similar compounds 

found. Values near 1 mean that the predicted compounds fall in an area of the model's space where the 

model gives reliable predictions (no misclassifications), otherwise the lower is the value, the worse the 

model behaves. Defined intervals are: 

 

If index < 0.6, accuracy of prediction for similar molecules found in the training set is good 

 

If 1.2 > index ≥ 0.6, accuracy of prediction for similar molecules found in the training set is not optimal 

 

If index ≥ 1.2, accuracy of prediction for similar molecules found in the training set is not adequate 

 

Concordance for similar molecules:  

This index takes into account the difference between the predicted value and the experimental values of the 

two most similar compounds. Values near 0 mean that the prediction made disagrees with the values found 

in the model's space, thus the prediction could be unreliable. Defined intervals are: 

 

If index < 0.6, molecules found in the training set have experimental values that agree with the target 

compound predicted value 

 

If 1.2 > index ≥ 0.6, similar molecules found in the training set have experimental values that slightly 

disagree with the target compound predicted value 

 

If index ≥ 1.2, similar molecules found in the training set have experimental values that completely disagree 

with the target compound predicted value 

 

Maximum error of prediction among similar molecules: 

This index takes into account the maximum error in prediction among the two most similar compounds. 

Values near 0 means that the predicted compounds fall in an area of the model's space where the model 

gives reliable predictions without any outlier value. Defined intervals are: 

 

If index < 0.6, the maximum error in prediction of similar molecules found in the training set has a low value, 

considering the experimental variability 

 

If 1.2 > index ≥ 0.6, the maximum error in prediction of similar molecules found in the training set has a 

moderate value, considering the experimental variability 

 

If index ≥ 1.2, the maximum error in prediction of similar molecules found in the training set has a high 

value, considering the experimental variability 

 

Atom Centered Fragments similarity check:  

 

This index takes into account the presence of one or more fragments that aren't found in the training set, or 

that are rare fragments. First order atom centered fragments from all molecules in the training set are 

calculated, then compared with the first order atom centered fragments from the predicted compound; then 

the index is calculated as following: a first index RARE takes into account rare fragments (those who occur 

less than three times in the training set), having value of 1 if no such fragments are found, 0.85 if up to 2 

fragments are found, 0.7 if more than 2 fragments are found; a second index NOTFOUND takes into 

account not found fragments, having value of 1 if no such fragments are found, 0.6 if a fragments is found, 



0.4 if more than 1 fragment is found. Then, the final index is given as the product RARE * NOTFOUND. 

Defined intervals are: 

 

If  index = 1, all atom centered fragment of the compound have been found in the compounds of the 

training set 

 

If 1 > index ≥ 0.7, some atom centered fragment of the compound have not been found in the compounds 

of the training set or are rare fragments 

 

If index < 0.7, a prominent number of atom centered fragments of the compound have not been found in 

the compounds of the training set or are rare fragments 

 

 

Model descriptors range check: 

This index checks if the descriptors calculated for the predicted compound are inside the range of 

descriptors of the training and test set. The index has value 1 if all descriptors are inside the range, 0 if at 

least one descriptor is out of the range. Defined intervals are: 

 

Index = TRUE, descriptors for this compound have values inside the descriptor range of the compounds of 

the training set 

Index = FALSE, descriptors for this compound have values outside the descriptor range of the compounds 

of the training set 

 

5.3.Software name and version for applicability domain assessment: 

VEGA (www.vegahub.eu) 

5.4.Limits of applicability: 

The model is not applicable to inorganic chemicals and substances containing unusual elements (i.e., 

different from C, O, N, S, P, Cl, Br, F, I). Salts can be predicted only if converted to the neutralized form. 

 

6.Internal validation - OECD Principle 4 

6.1.Availability of the training set: 

Yes 

6.2.Available information for the training set: 

CAS RN: Yes 

Chemical Name: No 

Smiles: Yes 

Formula: No 

INChI: No 

MOL file: No 

NanoMaterial: No 

6.3.Data for each descriptor variable for the training set: 

NA 

6.4.Data for the dependent variable for the training set: 

All 

6.5.Other information about the training set: 

Training set n = 177;. 



6.6.Pre-processing of data before modelling: 

The procedure is written in 3.7 (data quality). 

 

6.7.Statistics for goodness-of-fit: 

Training set: n = 177; R2 = 0.84; RMSE = 0.28 

6.8.Robustness - Statistics obtained by leave-one-out cross-validation: 

NA6.9.Robustness - Statistics obtained by leave-many-out cross-validation: 

NA 

6.10.Robustness - Statistics obtained by Y-scrambling: 

NA 

6.11.Robustness - Statistics obtained by bootstrap: 

NA 

6.12.Robustness - Statistics obtained by other methods: 

NA 

 

7.External validation - OECD Principle 4 

7.1.Availability of the external validation set: 

No, part of the test set is proprietary (ECHA data) 

7.2.Available information for the external validation set: 

NA 

7.3.Data for each descriptor variable for the external validation set: 

NA 

7.4.Data for the dependent variable for the external validation set: 

NA 

7.5.Other information about the external validation set: 

NA 

7.6.Experimental design of test set: 

NA 

7.7.Predictivity - Statistics obtained by external validation: 

Test set:  n = 44; R2 = 0.80; RMSE = 0.32 

Test set in AD: n = 35 (c.f. point 5.1 & 5.2); R2 = 0.81; RMSE = 0.28 

It is noted that the performance improves when only the substances are considered, which are within the 

AD as defined by VEGAs ADI algorithm.  

 

7.8.Predictivity - Assessment of the external validation set: 

NA 

7.9.Comments on the external validation of the model: 

The test set is not available because contains proprietary data. 

 

8.Providing a mechanistic interpretation - OECD Principle 5 

8.1.Mechanistic basis of the model: 

No assumption on the mechanism is done. 

8.2.A priori or a posteriori mechanistic interpretation: 

NA 



8.3.Other information about the mechanistic interpretation: 

NA 

 

9.Miscellaneous information 

9.1.Comments: 

NA 
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9.3.Supporting information: 

Training set(s)Test set(s)Supporting information: 

All available dataset are present in the model inside the VEGA software 

 

10.Summary (JRC QSAR Model Database) 

10.1.QMRF number: 

To be entered by JRC 

10.2.Publication date: 

To be entered by JRC 

10.3.Keywords: 

To be entered by JRC 

10.4.Comments: 

To be entered by JRC 
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